
SCIENCE
PASSION

TECHNOLOGY

CON — Task 3b Introduction
Matthias Fischer, Constantin Piber

> www.tugraz.at



Task 3.b: A tiny HTTP Server

Your Task

Receive HTTP/1.1 requests from clients

Answer requests:

Reject invalid packets

Parse the request and send the requested file

Test with browser: http://localhost:8000

For this, edit the file http.cpp. The Function handle_connection is
automatically called by the framework.
Matthias Fischer, Constantin Piber

2

http://localhost:8000


Task 3.b: A tiny HTTP Server

Your Task

Receive HTTP/1.1 requests from clients

Answer requests:

Reject invalid packets

Parse the request and send the requested file

Test with browser: http://localhost:8000

For this, edit the file http.cpp. The Function handle_connection is
automatically called by the framework.
Matthias Fischer, Constantin Piber

2

http://localhost:8000


Task 3.b: A tiny HTTP Server

Your Task

Receive HTTP/1.1 requests from clients

Answer requests:

Reject invalid packets

Parse the request and send the requested file

Test with browser: http://localhost:8000

For this, edit the file http.cpp. The Function handle_connection is
automatically called by the framework.
Matthias Fischer, Constantin Piber

2

http://localhost:8000


Task 3.b: A tiny HTTP Server

Your Task

Receive HTTP/1.1 requests from clients

Answer requests:

Reject invalid packets

Parse the request and send the requested file

Test with browser: http://localhost:8000

For this, edit the file http.cpp. The Function handle_connection is
automatically called by the framework.
Matthias Fischer, Constantin Piber

2

http://localhost:8000


Task 3.b: A tiny HTTP Server

How do packets arrive here?

Network as a stack: flexible but complex

Internet Protocol Suite

From lowest to highest layer:

1. Link: Physical (e.g. Ethernet)
2. Internet: Between networks (e.g. IP)
3. Transport: Connections (e.g. TCP)
4. Application: Inter-Program (e.g. HTTP)

Matthias Fischer, Constantin Piber

3



Task 3.b: A tiny HTTP Server

How do packets arrive here?

Network as a stack: flexible but complex

Internet Protocol Suite

From lowest to highest layer:

1. Link: Physical (e.g. Ethernet)
2. Internet: Between networks (e.g. IP)
3. Transport: Connections (e.g. TCP)
4. Application: Inter-Program (e.g. HTTP)

Matthias Fischer, Constantin Piber

3



Task 3.b: A tiny HTTP Server

How do packets arrive here?

Network as a stack: flexible but complex

Internet Protocol Suite

From lowest to highest layer:

1. Link: Physical (e.g. Ethernet)
2. Internet: Between networks (e.g. IP)
3. Transport: Connections (e.g. TCP)
4. Application: Inter-Program (e.g. HTTP)

Matthias Fischer, Constantin Piber

3



Task 3.b: A tiny HTTP Server

How do packets arrive here?

Network as a stack: flexible but complex

Internet Protocol Suite

From lowest to highest layer:

1. Link: Physical (e.g. Ethernet)
2. Internet: Between networks (e.g. IP)
3. Transport: Connections (e.g. TCP)
4. Application: Inter-Program (e.g. HTTP)

Matthias Fischer, Constantin Piber

3



Task 3.b: A tiny HTTP Server

How do packets arrive here?

Network as a stack: flexible but complex

Internet Protocol Suite

From lowest to highest layer:

1. Link: Physical (e.g. Ethernet)
2. Internet: Between networks (e.g. IP)
3. Transport: Connections (e.g. TCP)
4. Application: Inter-Program (e.g. HTTP)

Matthias Fischer, Constantin Piber

3



Task 3.b: A tiny HTTP Server

How do packets arrive here?

Network as a stack: flexible but complex

Internet Protocol Suite

From lowest to highest layer:

1. Link: Physical (e.g. Ethernet)
2. Internet: Between networks (e.g. IP)
3. Transport: Connections (e.g. TCP)
4. Application: Inter-Program (e.g. HTTP)

Matthias Fischer, Constantin Piber

3



Task 3.b: A tiny HTTP Server

How do packets arrive here?

Figure: Example: UDP over IP over Ethernet. 1

1Source https://commons.wikimedia.org/wiki/File:UDP_encapsulation.svg

Matthias Fischer, Constantin Piber

3

https://commons.wikimedia.org/wiki/File:UDP_encapsulation.svg


Task 3.b: A tiny HTTP Server

How do packets arrive here?

Figure: Example: Two Computers, TCP over IP over Ethernet. 1

1Source https://medium.com/@anna7/internet-protocol-layers-in-internet-protocol-suite-tcp-ip-abe038c0adde

Matthias Fischer, Constantin Piber

3

https://medium.com/@anna7/internet-protocol-layers-in-internet-protocol-suite-tcp-ip-abe038c0adde


Task 3.b: A tiny HTTP Server

About network stability

Why do we need to read multiple times? – Slow networks! Big requests!

Matthias Fischer, Constantin Piber

4



Task 3.b: A tiny HTTP Server

About network stability

Why do we need to read multiple times? – Slow networks! Big requests!

Why do we need to write multiple times? – The operating system
handles slow connections for us but can be interrupted

Matthias Fischer, Constantin Piber

4



Task 3.b: A tiny HTTP Server

HTTP

Base HTTP is request & response protocol

Matthias Fischer, Constantin Piber

5



Task 3.b: A tiny HTTP Server

HTTP

Base HTTP is request & response protocol

Client requests with method: GET, HEAD, OPTIONS, POST, PUT, DELETE,
TRACE, CONNECT, PATCH

Download data from server, or send data to server

Example:

GET /index.html HTTP/1.1

...

Matthias Fischer, Constantin Piber

5



Task 3.b: A tiny HTTP Server

HTTP

Base HTTP is request & response protocol

Server responds: 200 OK, 400 Bad Request, ...

Codes: 1xx informational response, 2xx success, 3xx redirection, 4xx
client errors, 5xx server errors

Example:

HTTP/1.1 200 OK

...

Matthias Fischer, Constantin Piber

5



Task 3.b: A tiny HTTP Server

HTTP

Base HTTP is request & response protocol

Some requests and responses include a body

Uploading data to the server, or downloading data from the server

Matthias Fischer, Constantin Piber

5



Task 3.b: A tiny HTTP Server

HTTP

Base HTTP is request & response protocol

Both directions use headers to send metadata, e.g. Host,
Connection, Content-Type, Content-Length, Range

Client-Headers tell: Who, from where, ...

Server-Headers answer: What, How much data, ...

Matthias Fischer, Constantin Piber

5



Task 3.b: A tiny HTTP Server

HTTP

Full Example:

GET /lorem.txt HTTP/1.1

Host: localhost:12345

HTTP/1.1 200 OK

Connection: close

Content-Type: text/plain

Content-Length: 17

lorem ipsum dolor

Matthias Fischer, Constantin Piber

5



Task 3.b: A tiny HTTP Server

HTTP

Figure: Example request

Matthias Fischer, Constantin Piber

5



Task 3.b: A tiny HTTP Server

Webroot escape attacks

The server “serves” static files, i.e. lets clients request files from the
disk

Privacy: Only allow access to public folder (webroot)

Client requests relative path, server must make sure it is inside
webroot while resolving full path

Relative path elements: current directory ./, parent directory ../

Matthias Fischer, Constantin Piber

6



Task 3.b: A tiny HTTP Server

Webroot escape attacks

webroot: /var/webroot

valid access:

/index.html →
/var/webroot/index.html

/img/kitten.jpg →
/var/webroot/img/kitten.jpg

/img/../lorem.txt →
/var/webroot/lorem.txt

Matthias Fischer, Constantin Piber

6



Task 3.b: A tiny HTTP Server

Webroot escape attacks

webroot: /var/webroot

invalid access:

/../../etc/passwd → /etc/passwd

/img/../../personal.txt →
/var/personal.txt

Matthias Fischer, Constantin Piber

6



Task 3.b: A tiny HTTP Server

Webroot escape attacks

Figure: Requesting a file outside webroot

Matthias Fischer, Constantin Piber

6



Task 3.b: A tiny HTTP Server

Webroot escape attacks

Preventing such attacks:

Use realpath to resolve request and webroot and compare

Reject requests with relative path elements

Matthias Fischer, Constantin Piber

6



Task 3.b: A tiny HTTP Server

Tips

Read data line by line

Always assume an invalid request!

Use the hints in the footnotes – man pages!

Start server using make run, check for leaks with make valgrind

Test your implementation using netcat

Print debug data about the request, its parts and function calls

Close both the connection and the file at the end, deallocate memory

Matthias Fischer, Constantin Piber

7



Task 3.b: A tiny HTTP Server

Tips

Read data line by line

Always assume an invalid request!

Use the hints in the footnotes – man pages!

Start server using make run, check for leaks with make valgrind

Test your implementation using netcat

Print debug data about the request, its parts and function calls

Close both the connection and the file at the end, deallocate memory

Matthias Fischer, Constantin Piber

7



Task 3.b: A tiny HTTP Server

Tips

Read data line by line

Always assume an invalid request!

Use the hints in the footnotes – man pages!

Start server using make run, check for leaks with make valgrind

Test your implementation using netcat

Print debug data about the request, its parts and function calls

Close both the connection and the file at the end, deallocate memory

Matthias Fischer, Constantin Piber

7



Task 3.b: A tiny HTTP Server

Tips

Read data line by line

Always assume an invalid request!

Use the hints in the footnotes – man pages!

Start server using make run, check for leaks with make valgrind

Test your implementation using netcat

Print debug data about the request, its parts and function calls

Close both the connection and the file at the end, deallocate memory

Matthias Fischer, Constantin Piber

7



Task 3.b: A tiny HTTP Server

Tips

Read data line by line

Always assume an invalid request!

Use the hints in the footnotes – man pages!

Start server using make run, check for leaks with make valgrind

Test your implementation using netcat

Print debug data about the request, its parts and function calls

Close both the connection and the file at the end, deallocate memory

Matthias Fischer, Constantin Piber

7



Task 3.b: A tiny HTTP Server

Useful functions

C

Compare strings: strcmp / strcasecmp (case insensitive)

Find character: strchr (first) / strrchr (last)

Allocate space dynamically: malloc (and free after use)

Convert string to number: atol (to long) / strtol (more control)

Matthias Fischer, Constantin Piber

8



Task 3.b: A tiny HTTP Server

Useful functions

C

Copy data: memcpy (data) / strcpy (strings) / strncpy (max length)

Files: stat (file information) / fopen (open file) / fseek (move in file) /
fread (read from file) / fclose (close file)

Output: printf (write to stdout) / dprintf (write to connection)

Matthias Fischer, Constantin Piber

8



Task 3.b: A tiny HTTP Server

Useful functions

C++

Strings Class: std::basic_string

Read file: std::basic_ifstream

Convert string to number: std::stol

Memory: new / new[], delete / delete[]

std::string members: size, append, substr, find_first_of, etc.

Matthias Fischer, Constantin Piber

8

https://en.cppreference.com/w/cpp/string/basic_string
https://en.cppreference.com/w/cpp/io/basic_ifstream
https://en.cppreference.com/w/cpp/string/basic_string/stol


Task 3.b: A tiny HTTP Server

Code Examples

All examples can be found on the course website and on discord.
We want to reads in words (separated by space), split each word by :

and reply to client.

ping_simple.cpp Simplistic implementation, no multi-read

ping.cpp Do multiple reads to get all data

ping_cpp.cpp C++ implementation of the above

Matthias Fischer, Constantin Piber

9



Task 3.b: A tiny HTTP Server

Code Examples

All examples can be found on the course website and on discord.
We want to reads in words (separated by space), split each word by :

and reply to client.

ping_simple.cpp Simplistic implementation, no multi-read

ping.cpp Do multiple reads to get all data

ping_cpp.cpp C++ implementation of the above

Matthias Fischer, Constantin Piber

9



Task 3.b: A tiny HTTP Server

Examples

Matthias Fischer, Constantin Piber

10



Task 3.b: A tiny HTTP Server

Questions?

Matthias Fischer, Constantin Piber

11


