

Digital System Integration and Programming

Introduction/Kick-Off

Barbara Gigerl, Rishub Nagpal

October 6th, 2021

IAIK – Graz University of Technology

- 1. Digital system integration and programming
- 2. About this course
- 3. Outlook: Projects

Digital system integration and programming

Digital system integration

- Digital systems: very complex
- System integration: connect multiple complex systems to achieve a certain goal

...and programming

• Hardware and Software

What is a System-on-a-Chip?

A **System-on-a-Chip (SoC)** is a complex system which:

- consists of several components.
- Each component itself is a complex system.
- Components include:
 - CPU
 - Memory
 - Bus architectures
 - I/O modules
 - Co-processors
 - Analog circuits
 - ...

A quick history

- 1970s: VLSI design
 - VLSI = Very large-scale integration
 - Combining millions of MOS transistors into an integrated circuit
- 1990s: System-on-a-chip
 - System integration: integration of a complete system, that until recently consisted of multiple ICs, onto a single IC (a SoC)
- Today: SoC is the state-of-the-art principle for designing chips.

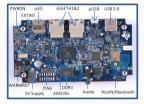
Smartphones

Tablets

 $\mathsf{Smart}\ \mathsf{TVs}$

Cars

— IAIK – Graz University of Technology


- Used in iPhone XS, XS Max, XR
- 7nm CMOS, 6.9 billion transistors
- Components:
 - 64-bit ARMv8.3A (6 performance CPUs, 4 energy-efficient CPUs)
 - Four-core GPU
 - Neural Engine with 8 cores
 - ...

- Used in smartphones by ZTE, Sony, OnePlus, LG, ...
- 7nm CMOS
- Components:
 - Several ARM Cortex-A77 and Cortex-A55-based CPUs
 - Deidcated processor for ISP for photos and videos
 - Wi-Fi
 - SPU: dedicated subsystem for boot-loader, key management unit, crypto accelerators, ...

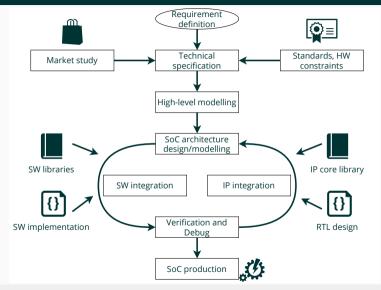
10:00	
10:00 Well, Federatery 26	Mare
	1
	-
	er.a

- SoC for industrial applications
- Used in thermostats, firewalls, Lego Mindstorms
- 1 GHz ARM CPU
- On-chip quad-core PRU (Programmable Realtime Unit)

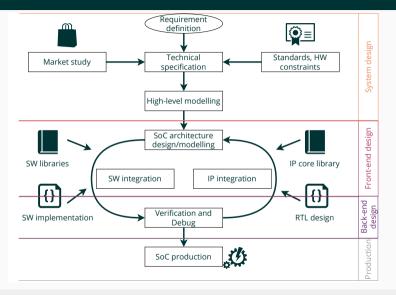
A typical SoC consists of:

- Processor(s): mostly ARM cores
- GPU: depending on the field of application, ranging from simple cores for small LCDs to 4k screens
- Co-processors: for security, real-time signal processing, ...
- I/O interfaces: Ethernet, SPI, USB, ADC, ...
- A bus connecting all components: AMBA, AXI, CoreConnect, ...

Advantages

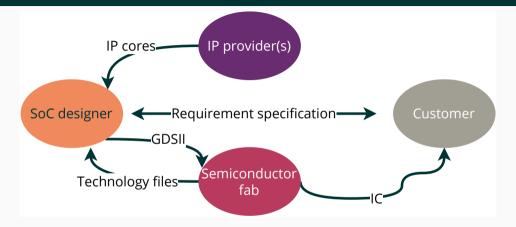

- Low silicon area
- Power efficiency (no need for complex component wiring)
- Low manufacturing costs
- Smaller power supply unit

Disadvantage: resulting system is very complex


• High design and development costs

www.tugraz.at 📕

SoC Design Methodology


SoC Design Methodology

- IAIK - Graz University of Technology

SoC Players

www.tugraz.at

- GDSII: data format to describe ICs
- Technology file: information about manufacturing (metals, IC layers, ...)

About this course

Barbara Gigerl

PhD student @ Graz University of Technology

- ➡ barbara.gigerl@iaik.tugraz.at
- ➡ sip-team@iaik.tugraz.at

— IAIK – Graz University of Technology

Rishub Nagpal

PhD student @ Graz University of Technology

- ➡ rishub.nagpal@lamarr.at
- ➡ sip-team@iaik.tugraz.at

- General information: https://www.iaik.tugraz.at/course/ digital-system-integration-and-programming-705007-wintersemester-2021-
- Questions and concerns via Discord https://discord.gg/9KKGfndsD5
- Questions and concerns by E-Mail mailto:sip-team@iaik.tugraz.at

- We focus on the front-end design
- We use an FPGA in order to build a prototype of our SoC
- Our Platform: Zybo Zynq Boards
 - 650Mhz dual-core Cortex-A9 processor
 - HDMI, VGA, USB, SPI, Ethernet, Audio, ...

- Build a working prototype
- Project management and self-organization
- Presentation of: ideas, results, technology in English
- Preparation for project/thesis

Previous Knowledge

Digital System Integration and Programming addresses **advanced-level students**. You need:

- Advanced knowledge about hardware including HDL (Verilog/VHDL) (Computer Organization and Networks is not enough!)
- Very good C/C++ skills
- Knowledge about Linux
 - Buildroot/Yocto, kernel modules, drivers, device trees, GPIO
- Knowledge about FPGAs and how to program them
- Knowledge about bus protocols, CPUs and networks
- Very good time-management skills
- Good presentation skills

>	
~ —	
~ —	Ų

We offer:

- Project driven work
 - Group oriented
 - Project centric
- Hands-on project with real hardware
- Upgrading of soft skills
 - Presentations
 - Speaking English
 - Group communication

We expect:

- Investment of time
 - SIP: 3 VU (5 ECTS)
 - $5 \times 25 = 125$ hours work = 28 days of 8 hours
- Active communication within your group
- Active participation, presence during lectures

Your grade consists of:

- Project 1: 20%
 - Individual work, independent submissions
- Project 2: 40%
 - Team work in groups of 2 or 3 students
- Seminar presentation: 40%
 - Selection from course catalog
 - Slides are reviewed by us
 - Submission until Monday evening

- Team Size for Project 1: 1
- Team Size for Project 2: 3
- Team Size for Seminar Presentation: 1

- 1. Find a group
- 2. Register your group: mailto:sip-team@iaik.tugraz.at
- 3. Wait for the confirmation mail to get your group number
- 4. Decide when to pick up the HW (IF01052, Mo-Fr 10:00-16:00)
- 5. Choose a seminar topic
- 6. Register for a seminar topic: https://bit.ly/2Ys9Cvi

Deadline: 12.10., 23:59

Project meetings

- Regular weekly meetings: Wednesday 10:00 12:00, online
 - Discord: https://discord.gg/9KKGfndsD5
 - Register in #getting-started to see channel
 - Questions: #sip
 - Finding team mates: #sip-groupsearch
 - Lecture: #sip-lecture
- Content
 - Student talks
 - Questions, problems and challenges about the current project

Date	Торіс
06.10.2021	Kick-off / Introduction to Seminar Topics / SoC Design Flow Tutorial
13.10.2021	Embedded Linux Tutorial / Introduction Project 1
20.10.2021	Debugging Tutorial / Seminar talks
27.10.2021	Seminar talks
03.11.2021	Seminar talks
10.11.2021	Introduction Project 2 / Seminar talks
17.11.2021	Seminar talks
24.11.2021	Seminar talks
01.12.2021	Seminar talks
15.12.2021	Seminar talks
12.01.2021	Seminar talks
19.01.2021	Seminar talks
26.01.2021	Seminar talks

- 12.10., 23:59: Deadline Group Registration
- 09.11., 23:59: Deadline Project 1
- 10.11. 17.11.: Interviews Project 1
- 09.12.,23:59: Deadline Project 2a
- 18.01. 25.1., 23:59: Deadline Project 2b
- 19.01. 26.01. 26.1.-28.1.: Interviews Project 2a+2b

Outlook: Projects

Project 1: Fancy Lights

- Get to know the board and run through all steps
- Design hardware, build a driver, write an application
- Access the LEDs from a bare-metal application and from within Linux
- No team work; everybody should do all steps (share your board within group)
- Aim: Everybody should have the same basic knowledge.

- Use knowledge from Project 1 to build larger system
- Receive encrypted image via Ethernet, decrypt it in hardware and display it via HDMI
- Team work
- Aim: Get some deeper understanding of the topic

Looking for a master project/thesis? https://www.iaik.tugraz.at/teaching/master-thesis/