Bitstream Encryption Vulnerabilities

Kevin Pretterhofer November 10, 2021

- Introduction
- Excursus: eFuse vs. BBRAM
- Brief discussion on three different attacks
- Other mentionable attacks

• Brief discussion about:

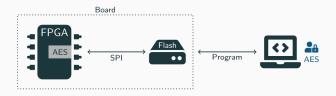
Year	Attack	Technique
2011	Key Extraction	Differential Power Analysis
2017	Plaintext Extraction	Optical Contactless Probing
2020	Plaintext Extraction	CBC-Malleability

• Other mentionable attacks:

Year	Attack	Technique
2012	Plaintext Extraction	DPA / Pipeline Emission Analysis
2018	Key Extraction	Thermal Laser Stimulation
2016	Key Extraction	DPA on the EM side channel

- What it is about:
 - An overview of (recent) bitstream encryption vulnerabilities
 - A brief explanation of those vulnerabilities
- What it is **not** about:
 - An in-depth and detailed description of those vulnerabilities
 - Detailed mitigation strategies for those vulnerabilities

Introduction

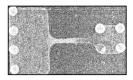

Bitstream Encryption (Recap)

- FPGAs gain importance
- Already used
 - in military devices
 - for signal processing
 - several customer products
- IP needs to be secured
 - Prevent stealing/cloning
 - Prevent tampering
- Therefore: Bitstream Encryption

Bitstream Encryption (Recap) cont.

- Bitstream encrypted on developer side
- Stored on Flash Memory
- Decryption happens on board before configuration
- Key for decryption stored in BBRAM or eFuse

Excursus: eFuse vs BBRAM


Overview

• eFuse

- One-Time programmable
- Values "burned in"
- No readback path
- No battery needed
- BBRAM
 - Re-programmable
 - Passive/Active clearing
 - Tamper resistant
 - No readback path
 - Battery backed

Which is more secure?

- According to Xilinx: BBRAM is more secure [2]
 - If keys are revealed: BBRAM can be reprogrammed
 - If tampering detected: BBRAM can be zeroized
 - eFuse probably "easy" to reverse engineer (large footprints)
- Since both are non-volatile:
 - They can be targeted when power is off

E-Fuse "Before"

E-Fuse "After"

Figure 1: eFuse key storage: before and after being programmed

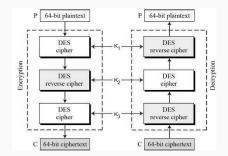
Power Analysis Attacks

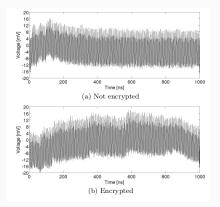
Overview: Moradi et al. in 2011 [5]

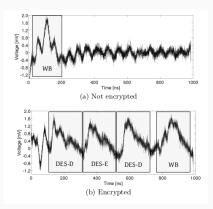
- Virtex-II Pro XC2VP7 FPGA (Xilinx)
- Triple-DES Bitstream Encryption
- Reverse Engineering + Differential Power Analysis + Profiling approach
- Key extracted in 2 3 minutes

Figure 2: XC2VP7

- Three consecutive DES ciphers
- Two or three 56-bit keys
- 48 Rounds
- Deprecated by NIST in 2018




Figure 3: Triple-DES


Concepts: Differential Power Analysis

- Exploit power consumption
- Attack a specific operation of the algorithm (e.g. SBOX)
- Query en/decryption for different inputs
 - and measure power consumption
- Enumerate possible sub-keys
 - and calculate the targeted operation for every input
- Derive a power consumption model
 - typically hamming weight / hamming distance
- Find correlations
 - Pearson Correlation Coefficient

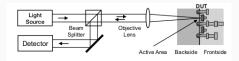
- 1. Reverse Engineering of the Bitstream
 - Basically comparing encrypted and plain bitstreams
- 2. Customizing the Measurement Setup
 - Microcontroller comprising JTAG protocol
 - Oscillator
 - ...
- 3. Timing and Power Profile Analysis
 - Gain information about underlying HW
 - Derive a power model
- 4. Extracting the Keys

Approach cont.

Figure 4: Raw measurements of power consumption during decryption

Figure 5: Filtered measurements of power consumption during decryption

Optical Contactless Probing

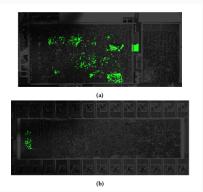

Overview: Tajik et al. in 2017 [7]

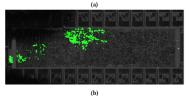
- XC7K70T Kintex 7 FPGA (Xilinx)
- AES Bitstream Encryption (semi-important for that attack)
- Electro-Optical Probing / Electro-Optical Frequency Mapping
- Raw plaintext acquisition 43 minutes
- Overall work about 10 days

Figure 6: Skoll Kintex 7 FPGA (with XC7K70T)

Concepts: EOP / EOFM

- Electro-Optical Probing
 - Probe electrical signals
 - Measure density of reflected light
- Electro-Optical Frequency Mapping
 - Create activity map of active circuits
 - Reflected light fed into spectrum analyzer

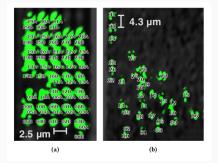



Figure 7: Simplified illustration of optical probing

Approach

- 1. Localize general configuration logic area
 - Light reflection (find irregular patterns)
 - EOFM with CCLK frequency
- 2. Localize AES decryption core
 - EOFM with CCLK frequency
 - If NOT in encrypted bitstream mode: disabled
- 3. Determine bus width
 - Induce patterns and perform EOFM
- 4. Localize gates, carrying the plaintext data
 - Induce patterns and perform EOFM
 - Enumerate nodes accordingly
- 5. Extract the data from those gates
 - EOP on individual bus lines

Approach cont.



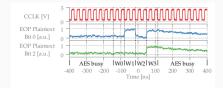

Figure 8: Activity map (32-bit word frequency, unencrypted), (a) Main logic area, (b) AES logic area

Figure 9: Activity map (plaintext data frequency, encrypted), (a) Main logic area, (b) AES logic area

Approach cont.

Figure 10: Mapping of plaintext bus bit locations, (a) AES output port, (b) alternative locations

Figure 11: Optically extracted plaintext data for two bus lines. Bit0: 0101, Bit2: 0001

Low Cost Full Break

Overview: Ender et al. in 2020 [1]

- Xilinx 7-Series
- AES Bitstream Encryption
- CBC Malleability
- 3 to 4 hours to have decrypted bitstream

Figure 12: Module with XC7K160T

Concepts: CBC Malleability

- Inducing a delta propagates to plaintext
- $c_i \oplus \Delta \to p_{i+1} \oplus \Delta$

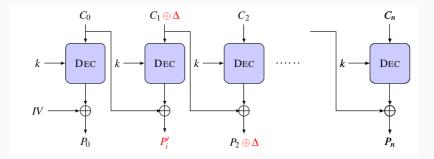


Figure 13: CBC Malleability

Concepts: MultiBoot / Fallback Routine

- If a remote-update fails: fall back
- Load working bitstream from specific address
- Stored in WBSTAR register

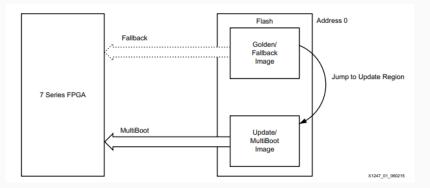


Figure 14: MultiBoot / Fallback Flow

- 1. Create malicious bitstream
 - Utilizing CBC-Malleability
- 2. Create readout bitstream
- 3. Configure FPGA with malicious bitstream
- 4. Let the FPGA reset
 - Due to wrong HMAC
- 5. Read out the WBSTAR register (readout bitstream)
- 6. Reset FPGA manually

Approach cont.

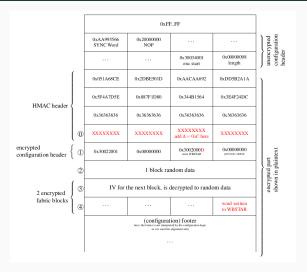


Figure 15: Example Malicious Bitstream

Other mentionable Attacks

- Skorobogatov and Woods in 2012 [6]
 - Actel/Microsemi ProASIC3 chips
 - Power Analysis
 - DPA and PEA (Pipeline Emission Analysis)
 - Backdoor: Read out bitstream
- Lohrke et al. in 2018 [3]
 - Xilinx Ultrascale Series
 - Optical Attack
 - Thermal Laser Stimulation
 - Revealed key from BBRAM

- Moradi and Schneider in 2016 [4]
 - Xilinx 5, 6 and 7 series
 - Power Analysis
 - Similar to DPA but with EM sidechannel
 - Revealed key

Bitstream Encryption Vulnerabilities

Kevin Pretterhofer November 10, 2021

26

References i

- Maik Ender, Amir Moradi, and Christof Paar. The Unpatchable Silicon: A Full Break of the Bitstream Encryption of Xilinx 7-Series FPGAs. In: 29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020. Ed. by Srdjan Capkun and Franziska Roesner. USENIX Association, 2020, pp. 1803–1819. URL: https://www.usenix.org/conference/ usenixsecurity20/presentation/ender.
- [2] Austin Lesea. IP security in FPGAs, WP261. Tech. rep. Xilinx, 2007.
- Heiko Lohrke et al. Key Extraction Using Thermal Laser Stimulation A Case Study on Xilinx Ultrascale FPGAs. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018.3 (2018), pp. 573–595. DOI: 10.13154/tches.v2018.i3.573-595. URL: https://doi.org/10.13154/tches.v2018.i3.573-595.

References ii

- [4] Amir Moradi and Tobias Schneider. Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption of 5, 6, and 7 Series. In: Constructive Side-Channel Analysis and Secure Design - 7th International Workshop, COSADE 2016, Graz, Austria, April 14-15, 2016, Revised Selected Papers. Ed. by François-Xavier Standaert and Elisabeth Oswald. Vol. 9689. Lecture Notes in Computer Science. Springer, 2016, pp. 71–87. DOI: 10.1007/978-3-319-43283-0_5. URL: https://doi.org/10.1007/978-3-319-43283-0%5C_5.
- [5] Amir Moradi et al. On the vulnerability of FPGA bitstream encryption against power analysis attacks: extracting keys from xilinx Virtex-II FPGAs. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS 2011, Chicago, Illinois, USA, October 17-21, 2011. Ed. by Yan Chen, George Danezis, and Vitaly Shmatikov. ACM, 2011, pp. 111–124. DOI: 10.1145/2046707.2046722. URL: https://doi.org/10.1145/2046707.2046722.

References iii

- [6] Sergei Skorobogatov and Christopher Woods. Breakthrough Silicon Scanning Discovers Backdoor in Military Chip. In: Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings. Ed. by Emmanuel Prouff and Patrick Schaumont. Vol. 7428. Lecture Notes in Computer Science. Springer, 2012, pp. 23–40. DOI: 10.1007/978-3-642-33027-8_2. URL: https://doi.org/10.1007/978-3-642-33027-8%5C_2.
- Shahin Tajik et al. On the Power of Optical Contactless Probing: Attacking Bitstream Encryption of FPGAs. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. Ed. by Bhavani M. Thuraisingham et al. ACM, 2017, pp. 1661–1674. DOI: 10.1145/3133956.3134039. URL: https://doi.org/10.1145/3133956.3134039.