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History



First Usage

• At first only ASIC were used.

• Very Large Scale integration ”VLSI”

• 1985 First ASIC from NASA for ground telemtry processing at

the Goddard Space Flight Center

• magnitude improvement in performance, cost and size over

previous telemetry processing implementations

• VLSI-based system lead to a wide spread usage of ASICs

• Small Explorer missions, Deep Space Network, Hubble Space

Telescope
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First real FPGA in Space

• First FPGA was used in the

SAMPEX data processing

unit (DPU)

• SAMPEX was launched on

July 3, 1992 from

Vandenberg Air Force Base

into a 550 x 675 km orbit.

• Harris 80C85RH

microprocessor

• 12 Actel FPGAs

• 2000 logic gates

• 2.2 cm2

• each 102mW power usage

Figure 1: SAMPEX data processing

unit
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FPGA in Space

• FPGAs where used more with time

• Advantages

• Increasing integrated circuit design costs

• FPGA offers time-to-market advantage

• Disadvantages

• High volume applications

• Higher power consumption compared to ASIC
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FPGA in Space

• 2008 Immarsat 4 communication satellite

• 2018 BepiColombo Mercury Planetary Orbiter

Figure 2: Image from tren2012Rog
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FPGA in Space

• 2013 Proba V Earth observation for vegetation observation

Figure 3: Image from tren2012Rog
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FPGA in Space

Figure 4: Image from tren2012Rog
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FPGA in Space

Figure 5: Image from tren2012Rog
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Relative quantities

Figure 6: Usage of FPGA and ASIC over time
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Challenges and Risks



Single Event Upsets (SEU)

• Single Event Upsets (SEU)

• Caused by radiation

• Have affects on registers and memory

• therefore they affect the functionality of the combinatorial

logic
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Mitigation

• straight forward mitigation is ”Triple Modular Redundancy”

for all registers

• does not protect on-chip memory or against multiple upsets

Figure 7: Voting of 3 registers

• also works at higher levels: Use 3 FPGAs, reprogram the

faulty one 12



Mitigation

• Use idle cycles in the design for concurrent error detection

• Prototyped using a Xilinx Virtex

• Automatic protection mechanisms for registers and memory in
code

• Mechanisms based on Hamming coding and two dimensional

parity arrays

• Approach has been demostrated using Altera and Xilinx

devices suit2002Sandi
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Mitigation

• Using Silicon on insulator (SOI) transistors

• Used for radiation-sensitive applications

• Better protection against SEU/radiation

• Lot of other Hardware based optimizations

• Different memory technologies, directional routing...
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Political Challenges



Political Challenges

• All major space FPGA suppliers are US companies

• Space parts must be checked by US International Traffic in

Arms Regulation (ITAR)

• If technologies are protected Information is restricted to US

citizens

• ITAR is an intend to stop American technology falling into

enemy hands

• ESA complained that these restrictions complicate project

management
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Specialized Hardware - FPGAs

developed for Space



Xilinx FPGAs for Space

• Xilinx offers different product families

• Normal, Dfense Grade and Space Grade

• Space Grade is normally a few generations behind

• Latest Space Grade Xilinx FPGA ”Kintex UltraScale” was

introduced 2014 for normal usage
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Xilinx FPGAs for Space

• Are used in many satellites

• Iridium Next (US, 66 active satellites)

• Glonass-K (Russian space-based satellite navigation system)

• NovaSAR-S

• Used in research satellites because they are ”On-Orbit

Reconfigurable”
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RT Kintex UltraScale

• 20nm (previous Space-Grade FPGA Virtex-5QV was 64nm)

• 38mb memory

• Lots of communication hardware

• Radiation-Effects Mitigation and Hardness

• Layout of the configuration memory cells is optimized with

SEU design rules

• Users can enable build-in tools for more hardness like triple

modular redundancy and error detection

• periodic device reconfiguration
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RT Kintex UltraScale

• Own configuration engine for periodic reconfiguration

Figure 8: Image from kin2020xil
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RT Kintex UltraScale

• Radiation Characteristics

Figure 9: Image from kin2020xil

20



RT Kintex UltraScale

• Can utilize the TMR idea

• Implemented using software IPs (3x 32bit RSIC processors)

Figure 10: Image from kin2020xil
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Specialized Hardware - Remote

FPGA Configuration



CFTP

• Configurable Fault Tolerant Processor

• Project from Naval Postgraduate School

• Same FPGA two times, one for experiments

• Allows simple experiments and tests with FPGAs in Space

Figure 11: Image from chal2005sur
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Specialized Hardware - Testing

Hardware with FLIPPER



FLIPPER

• Project founded by ESA

• Emulates fault emulation for SRAM-based FPGA devices

• Acomplished by partial reconfiguration

• Two major releases, latest one with Virtex-5

Figure 12: Flipper with Xilinx Virtex-4, Image from isaf2017Flipper
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FLIPPER

• Quantitative characterization of design robustness

• Can be used for comparison of design hardening techniques

• Tuning of design redundancy and protection
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Lessions Learned



The Single Event Upset review

• In a recent satellite project a task force was formed to

investigate FPGA desings in critical systems less2002Sandi

• Conclusions:

• Designers are often unaware of how the synthesis tools work

• Little effort had been done to verify that SEU protection were

actually implemented

• It is extremely costly to perform a review a long time after the

design has been completed

• Poor awareness in spacecraft projects regarding the sheer

number of FPGA designs and parts used on spacecrafts
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The WIRE power-up mishap

• WIRE - Wide-field Infrared Explorer (also Explorer 75 and

SMEX-5)

• NASA satellite

• The FPGA on board was a synchronous reset

• Startup time for the oscillator was not taken into consideration

• Default values during startup where not checked

• The telescope cover came off prematurely and the telescope

was unusable
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