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Neural Networks



Motivation

• Computer Vision, Speech Recognition and Image

Classification become increasingly important

• Hard coded algorithms are replaced by Machine Learning

concepts

• Neural Networks have very high computational complexity

• Many applications need low latency and high efficency
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Neural Networks

• Inspired by biological

nervous sytem

• Predict simple functions

through learnable weights

• Basic building blocks Figure 1: Aritifcal Neuron with

inputs x, weights w and output y [1]
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Neural Networks (cont’d)

• Multiple artificial neurons

connected in layers

• Connection to each neuron

in the adjacent layer

• Able to learn complex

functions

• Adjust weights in training

phase Figure 2: Fully Connected Neural

Network [1]
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Convolutional Neural Networks

• Specialized for image data

• Most information is local

• No fully connected

architecture needed

• 2D Convolutions
Figure 3: Convolutional Neural

Network [1]
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Parallelization

3x3 Convolutional kernel, with output O, input I and weights F :
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• Independence of:

• Layers

• Pixel locations (y , x)

• Input channels ci

• Output channels co

• Intra-kernel multiplications

• Lots of data reuse and parallelization potential
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Hardware Accelerators



CPU vs. GPU

CPU:

• Highly optimized for serial workloads

• Few cores

• Pour performance per watt

GPU:

• Most popular platform for Neural Networks

• Highly optimized for independent parallel workloads

• Fast floating point operations

• Optimal for batches of data

• High power consumption
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ASIC vs. FPGA

ASIC:

• Structure freezed at design time

• Typically only accelerators for specific parts

• High price

• Best performance per watt

FPGA:

• Reasonable flexibility

• Well suited for parallel workloads

• Good performance per watt

• Low latency
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Applications

Low latency and low power consumption make FPGAs interesting

for:

• Computer vision

• Robots

• Drohnes

• Autonomous Driving

• Datacenters

• Microsoft

• Google (ASIC)
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Challenges

• Large Neural Networks have millions of parameters

• Usually no floating point hardware available

• Off-chip memory access is slow

• Solutions:

• Reduce parameter count

• Use 16 bit float / binary weights

• Data locality is key

• Reuse on-chip data
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ZynqNet



ZynqNet

FPGA-based Convolutional Neural Network (CNN)

implementation, with focus on co-operation between Hardware and

CNN.

• ZynqNet CNN: Custom FPGA optimized CNN architecture

• ZynqNet FPGA Accelerator: FPGA architecture for

efficient acceleration of the ZnyqNet CNN

• Implemented on Zynq platform

• Trained offline on GPUs
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ZynqNet CNN

• Based on SqueezeNet

• Consists of:

• 1x1 and 3x3 convolutional layers

• ReLU activations

• Concatenation

• Global average pooling
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ZynqNet FPGA Accelerator

• 3x3 multiplications in parallel

• Partial parallelization of output channels

• Cache 2 full input image lines

• Cache all weights of current layer

• Cache single output elements

Figure 4: Input line caching [1] 13



ZynqNet FPGA Accelerator (cont’d)

Figure 5: Block diagram [1]
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Utilization and Performance

• Implemented on Zynq XC-7Z045 FPGA

• 80% DSP slices used

• 90% Block RAM used

• 1955ms per frame

Figure 6: Block diagram [1]
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Questions?
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