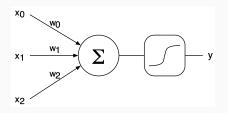
FPGAs and Neural Networks/ZynqNet


Gernot Walser

December 14, 2021

Neural Networks

- Computer Vision, Speech Recognition and Image Classification become increasingly important
- Hard coded algorithms are replaced by Machine Learning concepts
- Neural Networks have very high computational complexity
- Many applications need low latency and high efficency

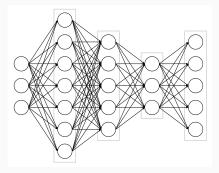

- Inspired by biological nervous sytem
- Predict simple functions through learnable weights
- Basic building blocks

Figure 1: Aritifcal Neuron with inputs x, weights w and output y [1]

Neural Networks (cont'd)

- Multiple artificial neurons connected in layers
- Connection to each neuron in the adjacent layer
- Able to learn complex functions
- Adjust weights in training phase

Convolutional Neural Networks

- Specialized for image data
- Most information is local
- No fully connected architecture needed
- 2D Convolutions

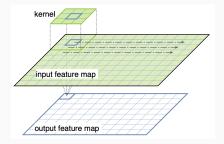


Figure 3: Convolutional Neural Network [1]

3x3 Convolutional kernel, with output O, input I and weights F:

$$O_{(y,x)}^{(co)} = \sum_{ci=0}^{ch_{in}-1} \left(\sum_{j=-1}^{1} \sum_{i=-1}^{1} I_{(y-j,x-i)}^{(ci)} \cdot F_{(j,i)}^{(ci,co)} \right)$$

- Independence of:
 - Layers
 - Pixel locations (y, x)
 - Input channels ci
 - Output channels co
 - Intra-kernel multiplications
- Lots of data reuse and parallelization potential

Hardware Accelerators

CPU vs. GPU

CPU:

- Highly optimized for serial workloads
- Few cores
- Pour performance per watt

GPU:

- Most popular platform for Neural Networks
- Highly optimized for independent parallel workloads
- Fast floating point operations
- Optimal for batches of data
- High power consumption

ASIC vs. FPGA

ASIC:

- Structure freezed at design time
- Typically only accelerators for specific parts
- High price
- Best performance per watt

FPGA:

- Reasonable flexibility
- Well suited for parallel workloads
- Good performance per watt
- Low latency

Low latency and low power consumption make FPGAs interesting for:

- Computer vision
 - Robots
 - Drohnes
 - Autonomous Driving
- Datacenters
 - Microsoft
 - Google (ASIC)

- Large Neural Networks have millions of parameters
- Usually no floating point hardware available
- Off-chip memory access is slow
- Solutions:
 - Reduce parameter count
 - Use 16 bit float / binary weights
 - Data locality is key
 - Reuse on-chip data

ZynqNet

FPGA-based Convolutional Neural Network (CNN) implementation, with focus on co-operation between Hardware and CNN.

- ZynqNet CNN: Custom FPGA optimized CNN architecture
- ZynqNet FPGA Accelerator: FPGA architecture for efficient acceleration of the ZnyqNet CNN
- Implemented on Zynq platform
- Trained offline on GPUs

- Based on SqueezeNet
- Consists of:
 - 1x1 and 3x3 convolutional layers
 - ReLU activations
 - Concatenation
 - Global average pooling

ZynqNet FPGA Accelerator

- 3x3 multiplications in parallel
- Partial parallelization of output channels
- Cache 2 full input image lines
- Cache all weights of current layer
- Cache single output elements

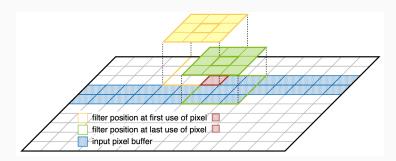


Figure 4: Input line caching [1]

ZynqNet FPGA Accelerator (cont'd)

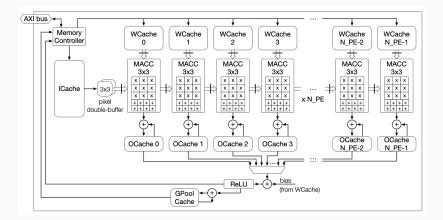


Figure 5: Block diagram [1]

Utilization and Performance

- Implemented on Zynq XC-7Z045 FPGA
- 80% DSP slices used
- 90% Block RAM used
- 1955ms per frame

	#conv. layers	#MACCs [millions]	#params [millions]	#activations [millions]	ImageNet top-5 error
ZynqNet CNN	18	530	2.5	8.8	15.4%
AlexNet	5	1140	62.4	2.4	19.7%
Network-in-Network	12	1100	7.6	4.0	~19.0%
VGG-16	16	15 470	138.3	29.0	8.1%
GoogLeNet	22	1 600	7.0	10.4	9.2%
ResNet-50	50	3870	25.6	46.9	7.0%
Inception v3	48	5710	23.8	32.6	5.6%
Inception-ResNet-v2	96	9210	31.6	74.5	4.9%
SqueezeNet	18	860	1.2	12.7	19.7%
SqueezeNet v1.1	18	390	1.2	7.8	19.7%

Figure 6: Block diagram [1]

Questions?

- [1] David Gschwend. ZynqNet: An FPGA-Accelerated Embedded Convolutional Neural Network. https://arxiv.org/pdf/2005.06892.pdf. Online; accessed 13 December 2021.
- [2] Ahmad Shawahna, Sadiq M. Sait and Aiman El-Maleh. *FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification: A Review*. https://ieeexplore.ieee.org/document/8594633. Online; accessed 13 December 2021.

References ii

- [3] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh and Debbie Marr. A FPGA-based Hardware Accelerator for Multiple Convolutional Neural Networks. https://ieeexplore.ieee.org/document/8565657.
 Online; accessed 13 December 2021.
- [4] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin Strauss and Eric S. Chung. Accelerating Deep Convolutional Neural Networks Using Specialized Hardware. https://www.microsoft.com/en-us/research/ wp-content/uploads/2016/02/CNN20Whitepaper.pdf. Online; accessed 13 December 2021.

- [5] Stacey Higginbotham. Google takes unconventional route with homegrown machine learning chips. https://www.nextplatform.com/2016/05/19/ google-takes-unconventional-route-homegrown-machine-lea Online; accessed 13 December 2021.
- [6] Lukas Cavigelli. FPGA System Design for Computer Vision with Convolutional Neural Networks. https://iis-projects.ee. ethz.ch/index.php/FPGA_System_Design_for_Computer_ Vision_with_Convolutional_Neural_Networks. Online; accessed 13 December 2021.