
Chapter 10

1

Chapter 10

2

function PDR(Model 𝑀)

if SAT(𝑆଴ ∧ ൓𝑃ሻ or SAT(𝑆଴ ∧ 𝑅 ∧ ൓𝑃′ሻ then FAIL
𝐹଴ := 𝑆଴; 𝐹ଵ := 𝑃; 𝑘 :=1;

while(true)

while(𝑠 := SAT(𝐹௞ ∧ 𝑅 ∧ ൓𝑃’))

removeBad(k, 𝑠)

𝑘++; 𝐹௞ := 𝑃

propagateClauses(k)

if ∃0 ൑ 𝑖 ൏ 𝑘 െ 1: 𝐹௜: ൌ 𝐹௜ାଵ then SUCCEED

// post: ൓𝑆𝐴𝑇ሺ𝐹௜ ∧ 𝑠ሻ

function removeBad(𝑖 ∈ 𝑁, state sሻ

if SAT(𝑆଴ ∧ 𝑐ሻ then FAIL
while(𝑡 := SAT(𝐹௜ିଵ ∧ 𝑅 ∧ 𝑠′))

removeBad(𝑖 െ 1, 𝑡)

𝑔 := generalize(𝑖, 𝑐)

∀0 ൏ 𝑗 ൑ 𝑖: 𝐹௝ ≔ 𝐹௝ ∧ ൓s

Chapter 10

3

function PDR(Model 𝑀)

if SAT(𝑆଴ ∧ ൓𝑃ሻ or SAT(𝑆଴ ∧ 𝑅 ∧ ൓𝑃′ሻ then FAIL
𝐹଴ := 𝑆଴; 𝐹ଵ := 𝑃; 𝑘 :=1;

while(true)

while(𝑠 := SAT(𝐹௞ ∧ 𝑅 ∧ ൓𝑃’))

removeBad(k, 𝑠)

𝑘++; 𝐹௞ := 𝑃

propagateClauses(k)

if ∃0 ൑ 𝑖 ൏ 𝑘 െ 1: 𝐹௜: ൌ 𝐹௜ାଵ then SUCCEED

// post: ൓𝑆𝐴𝑇ሺ𝐹௜ ∧ 𝑠ሻ

function removeBad(𝑖 ∈ 𝑁, state sሻ

if SAT(𝑆଴ ∧ 𝑐ሻ then FAIL
while(𝑡 := SAT(𝐹௜ିଵ ∧ 𝑅 ∧ 𝑠′))

removeBad(𝑖 െ 1, 𝑡)

𝑔 := generalize(𝑖, 𝑐)

∀0 ൏ 𝑗 ൑ 𝑖: 𝐹௝ ≔ 𝐹௝ ∧ ൓s

Chapter 10

4

function PDR(Model 𝑀)

if SAT(𝑆଴ ∧ ൓𝑃ሻ or SAT(𝑆଴ ∧ 𝑅 ∧ ൓𝑃′ሻ then FAIL
𝐹଴ := 𝑆଴; 𝐹ଵ := 𝑃; 𝑘 :=1;

while(true)

while(𝑠 := SAT(𝐹௞ ∧ 𝑅 ∧ ൓𝑃’))

removeBad(k, 𝑠)

𝑘++; 𝐹௞ := 𝑃

propagateClauses(k)

if ∃0 ൑ 𝑖 ൏ 𝑘 െ 1: 𝐹௜: ൌ 𝐹௜ାଵ then SUCCEED

// post: ൓𝑆𝐴𝑇ሺ𝐹௜ ∧ 𝑠ሻ

function removeBad(𝑖 ∈ 𝑁, state sሻ

if SAT(𝑆଴ ∧ 𝑐ሻ then FAIL
while(𝑡 := SAT(𝐹௜ିଵ ∧ 𝑅 ∧ 𝑠′))

removeBad(𝑖 െ 1, 𝑡)

𝑔 := generalize(𝑖, 𝑐)

∀0 ൏ 𝑗 ൑ 𝑖: 𝐹௝ ≔ 𝐹௝ ∧ ൓s

Chapter 10

5

function PDR(Model 𝑀)

if SAT(𝑆଴ ∧ ൓𝑃ሻ or SAT(𝑆଴ ∧ 𝑅 ∧ ൓𝑃′ሻ then FAIL
𝐹଴ := 𝑆଴; 𝐹ଵ := 𝑃; 𝑘 :=1;

while(true)

while(𝑠 := SAT(𝐹௞ ∧ 𝑅 ∧ ൓𝑃’))

removeBad(k, 𝑠)

𝑘++; 𝐹௞ := 𝑃

propagateClauses(k)

if ∃0 ൑ 𝑖 ൏ 𝑘 െ 1: 𝐹௜: ൌ 𝐹௜ାଵ then SUCCEED

// post: ൓𝑆𝐴𝑇ሺ𝐹௜ ∧ 𝑠ሻ

function removeBad(𝑖 ∈ 𝑁, state sሻ

if SAT(𝑆଴ ∧ 𝑐ሻ then FAIL
while(𝑡 := SAT(𝐹௜ିଵ ∧ 𝑅 ∧ 𝑠′))

removeBad(𝑖 െ 1, 𝑡)

𝑔 := generalize(𝑖, 𝑐)

∀0 ൏ 𝑗 ൑ 𝑖: 𝐹௝ ≔ 𝐹௝ ∧ ൓s

Chapter 10

6

function PDR(Model 𝑀)

if SAT(𝑆଴ ∧ ൓𝑃ሻ or SAT(𝑆଴ ∧ 𝑅 ∧ ൓𝑃′ሻ then FAIL
𝐹଴ := 𝑆଴; 𝐹ଵ := 𝑃; 𝑘 :=1;

while(true)

while(𝑠 := SAT(𝐹௞ ∧ 𝑅 ∧ ൓𝑃’))

removeBad(k, 𝑠)

𝑘++; 𝐹௞ := 𝑃

propagateClauses(k)

if ∃0 ൑ 𝑖 ൏ 𝑘 െ 1: 𝐹௜: ൌ 𝐹௜ାଵ then SUCCEED

// post: ൓𝑆𝐴𝑇ሺ𝐹௜ ∧ 𝑠ሻ

function removeBad(𝑖 ∈ 𝑁, state sሻ

if SAT(𝑆଴ ∧ 𝑐ሻ then FAIL
while(𝑡 := SAT(𝐹௜ିଵ ∧ 𝑅 ∧ 𝑠′))

removeBad(𝑖 െ 1, 𝑡)

𝑔 := generalize(𝑖, 𝑐)

∀0 ൏ 𝑗 ൑ 𝑖: 𝐹௝ ≔ 𝐹௝ ∧ ൓s

All frames are still different, so P is not
verified.

Chapter 10

7

Chapter 10

8

function PDR(Model 𝑀)

if SAT(𝑆଴ ∧ ൓𝑃ሻሻ or 𝑆𝐴𝑇ሺ𝑆_0 ∧ 𝑅 ∧ ൓𝑃′ሻ then FAIL
𝐹଴ := 𝑆଴; 𝐹ଵ := 𝑃; 𝑘 :=1;

while(true)

while(𝑠 := SAT(𝐹௞ ∧ 𝑅 ∧ ൓𝑃′))

removeBad(k, 𝑠)

𝑘++; 𝐹௞ := 𝑃

propagateClauses(k)

if ∃0 ൑ 𝑖 ൏ 𝑘 െ 1: 𝐹௜: ൌ 𝐹௜ାଵ then SUCCEED

// post: ൓𝑆𝐴𝑇ሺ𝐹௜ ∧ 𝑠ሻ

function removeBad(𝑖 ∈ 𝑁, state sሻ

if SAT(𝑆଴ ∧ 𝑐ሻ then FAIL
while(𝑡 := SAT(𝐹௜ିଵ ∧ 𝑅 ∧ 𝑠′))

removeBad(𝑖 െ 1, 𝑡)

𝑔 := generalizeNaive(𝑖, 𝑠)

∀0 ൏ 𝑗 ൑ 𝑖: 𝐹௝ ≔ 𝐹௝ ∧ ൓𝑔

function generalizeNaive(i, state 𝑠)

return a shortest cube 𝑐 such that

- 𝑐 ← 𝑠

- ൓SAT F୧ିଵ ∧ 𝑅 ∧ 𝑐′

- ൓SATሺ𝑆଴ ∧ 𝑐ሻ

Chapter 10

9

function PDR(Model 𝑀)

if SAT(𝑆଴ ∧ ൓𝑃ሻሻ or 𝑆𝐴𝑇ሺ𝑆_0 ∧ 𝑅 ∧ ൓𝑃′ሻ then FAIL
𝐹଴ := 𝑆଴; 𝐹ଵ := 𝑃; 𝑘 :=1;

while(true)

while(𝑠 := SAT(𝐹௞ ∧ 𝑅 ∧ ൓𝑃′))

removeBad(k, 𝑠)

𝑘++; 𝐹௞ := 𝑃

propagateClauses(k)

if ∃0 ൑ 𝑖 ൏ 𝑘 െ 1: 𝐹௜: ൌ 𝐹௜ାଵ then SUCCEED

// post: ൓𝑆𝐴𝑇ሺ𝐹௜ ∧ 𝑠ሻ

function removeBad(𝑖 ∈ 𝑁, state sሻ

if SAT(𝑆଴ ∧ 𝑐ሻ then FAIL
while(𝑡 := SAT(𝐹௜ିଵ ∧ 𝑅 ∧ 𝑠′))

removeBad(𝑖 െ 1, 𝑡)

𝑔 := generalizeNaive(𝑖, 𝑠)

∀0 ൏ 𝑗 ൑ 𝑖: 𝐹௝ ≔ 𝐹௝ ∧ ൓𝑔

function generalizeNaive(i, state 𝑠)

return a shortest cube 𝑐 such that

- 𝑐 ← 𝑠

- ൓SAT F୧ିଵ ∧ 𝑅 ∧ 𝑐′

- ൓SATሺ𝑆଴ ∧ 𝑐ሻ

i=1 , s=110,
c=𝑥ଵ

Chapter 10

10

function PDR(Model 𝑀)

if SAT(𝑆଴ ∧ ൓𝑃ሻሻ or 𝑆𝐴𝑇ሺ𝑆_0 ∧ 𝑅 ∧ ൓𝑃′ሻ then FAIL
𝐹଴ := 𝑆଴; 𝐹ଵ := 𝑃; 𝑘 :=1;

while(true)

while(𝑠 := SAT(𝐹௞ ∧ 𝑅 ∧ ൓𝑃′))

removeBad(k, 𝑠)

𝑘++; 𝐹௞ := 𝑃

propagateClauses(k)

if ∃0 ൑ 𝑖 ൏ 𝑘 െ 1: 𝐹௜: ൌ 𝐹௜ାଵ then SUCCEED

// post: ൓𝑆𝐴𝑇ሺ𝐹௜ ∧ 𝑠ሻ

function removeBad(𝑖 ∈ 𝑁, state sሻ

if SAT(𝑆଴ ∧ 𝑐ሻ then FAIL
while(𝑡 := SAT(𝐹௜ିଵ ∧ 𝑅 ∧ 𝑠′))

removeBad(𝑖 െ 1, 𝑡)

𝑔 := generalizeNaive(𝑖, 𝑠)

∀0 ൏ 𝑗 ൑ 𝑖: 𝐹௝ ≔ 𝐹௝ ∧ ൓𝑔

function generalizeNaive(i, state 𝑠)

return a shortest cube 𝑐 such that

- 𝑐 ← 𝑠

- ൓SAT F୧ିଵ ∧ 𝑅 ∧ 𝑐′

- ൓SATሺ𝑆଴ ∧ 𝑐ሻ

i=1 , s=110,
c=𝑥ଵ

Chapter 10

11

function PDR(Model 𝑀)

if SAT(𝑆଴ ∧ ൓𝑃ሻሻ or 𝑆𝐴𝑇ሺ𝑆_0 ∧ 𝑅 ∧ ൓𝑃′ሻ then FAIL
𝐹଴ := 𝑆଴; 𝐹ଵ := 𝑃; 𝑘 :=1;

while(true)

while(𝑠 := SAT(𝐹௞ ∧ 𝑅 ∧ ൓𝑃′))

removeBad(k, 𝑠)

𝑘++; 𝐹௞ := 𝑃

propagateClauses(k)

if ∃0 ൑ 𝑖 ൏ 𝑘 െ 1: 𝐹௜: ൌ 𝐹௜ାଵ then SUCCEED

// post: ൓𝑆𝐴𝑇ሺ𝐹௜ ∧ 𝑠ሻ

function removeBad(𝑖 ∈ 𝑁, state sሻ

if SAT(𝑆଴ ∧ 𝑐ሻ then FAIL
while(𝑡 := SAT(𝐹௜ିଵ ∧ 𝑅 ∧ 𝑠′))

removeBad(𝑖 െ 1, 𝑡)

𝑔 := generalizeNaive(𝑖, 𝑠)

∀0 ൏ 𝑗 ൑ 𝑖: 𝐹௝ ≔ 𝐹௝ ∧ ൓𝑔

function generalizeNaive(i, state 𝑠)

return a shortest cube 𝑐 such that

- 𝑐 ← 𝑠

- ൓SAT F୧ିଵ ∧ 𝑅 ∧ 𝑐′

- ൓SATሺ𝑆଴ ∧ 𝑐ሻ

We repeat the
same steps.

𝐹ଵ ൌ 𝐹ଶ , so P is
verified.

Chapter 10

12

Chapter 10

13

– The set ൓𝑥ଵ is inductive.

𝐼 ⊆ 𝑆 is inductive if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. I ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐼 ⊆ 𝐼)

Chapter 10

14

– The set ൓𝑥ଵ is inductive. TRUE

𝐼 ⊆ 𝑆 is inductive if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. I ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐼 ⊆ 𝐼)

Chapter 10

15

– The set ൓𝑥ଷ is inductive.

𝐼 ⊆ 𝑆 is inductive if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. I ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐼 ⊆ 𝐼)

Chapter 10

16

– The set ൓𝑥ଷ is inductive. 010 -> 011
FALSE

𝐼 ⊆ 𝑆 is inductive if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. I ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐼 ⊆ 𝐼)

Chapter 10

17

– The set ൓𝑥ଶ is inductive relative to ൓𝑥ଵ.

𝐼 ⊆ 𝑆 is inductive relative to F if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. 𝐼 ∧ 𝐹 ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐹 ∩ 𝐼 ⊆ 𝐼)

Chapter 10

18

– The set ൓𝑥ଶ is inductive relative to ൓𝑥ଵ. 000 -> 010
FALSE

𝐼 ⊆ 𝑆 is inductive relative to F if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. 𝐼 ∧ 𝐹 ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐹 ∩ 𝐼 ⊆ 𝐼)

Chapter 10

19

– The set ൓𝑥ଷ is inductive relative to ൓𝑥ଵ.

𝐼 ⊆ 𝑆 is inductive relative to F if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. 𝐼 ∧ 𝐹 ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐹 ∩ 𝐼 ⊆ 𝐼)

Chapter 10

20

– The set ൓𝑥ଷ is inductive relative to ൓𝑥ଵ. 010 -> 011
FALSE

𝐼 ⊆ 𝑆 is inductive relative to F if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. 𝐼 ∧ 𝐹 ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐹 ∩ 𝐼 ⊆ 𝐼)

21

Bettina Könighofer
January 24, 2020

Graz University of Technology
Institute for Applied Information
Processing and Communications

Temporal Logic

Model Checking SS21

A B

CX

A A B

C

11.04.2022
Institute for Applied Information Processing and Communications

23

• “If today is Tuesday, tomorrow is Wednesday.”

• “This lecture is exciting and not boring.”

Warm Up

Translate sentences to formulas

11.04.2022
Institute for Applied Information Processing and Communications

24

• “If today is Thursday, then tomorrow is Friday.”

• “This lecture is exciting and not boring.”

Warm Up

Translate sentences to formulas

p… today is Tuesday, q… tomorrow is Wednesday
𝑝 → 𝑞

p… This lecture is exciting ,
q… This lecture is boring

𝑝 ∧ ൓𝑞

Warm Up

11.04.2022
Institute for Applied Information Processing and Communications

25

 Whenever it rains, I have an umbrella

 When it rains, worms come out after a while

 I will not pay before you deliver the goods

Modeling a reactive system
Kripke structure

26

11.04.2022
Institute for Applied Information Processing and Communications

Modeling a reactive system
Kripke structure

27

a b

x
c

11.04.2022
Institute for Applied Information Processing and Communications

Properties of Kripke Structures28

a b

x
v

11.04.2022
Institute for Applied Information Processing and Communications

• Always when the robot visits A, it
visits C within the next two steps.

• The robot can visit C within the next two
steps after visiting A

Write properties as formulasProperties

Propositional Temporal Logic

11.04.2022
Institute for Applied Information Processing and Communications

29

AP – a set of atomic propositions, p,qAP

Temporal operators:
Xp
Gp
Fp
pUq

pRq

Path quantifiers: A for all paths
E there exists a path

Properties of Kripke Structures30

a b

x
c

11.04.2022
Institute for Applied Information Processing and Communications

• Always when the robot visits A, it
visits C within the next two steps.

• The robot can visit C within the next two
steps after visiting A

Write properties as formulasProperties

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path

Properties of Kripke Structures31

a b

x
c

11.04.2022
Institute for Applied Information Processing and Communications

• Always when the robot visits A, it
visits C within the next two steps.

• The robot can visit C within the next two
steps after visiting A

Write properties as formulasProperties

𝐴 𝐺 ሺ𝑎 → 𝑋𝑐 ∨ 𝑋𝑋𝑐ሻ

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path

𝐸 𝐺 ሺ𝑎 → 𝑋𝑐 ∨ 𝑋𝑋𝑐ሻ

Properties of Kripke Structures32

a b

x
c

11.04.2022
Institute for Applied Information Processing and Communications

• The robot never visits X

• It is possible that the robot never visits X

Write properties as formulasProperties

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path

Properties of Kripke Structures33

a b

x
c

11.04.2022
Institute for Applied Information Processing and Communications

• The robot never visits X

• It is possible that the robot never visits X

Write properties as formulasProperties

𝐴 𝐺 ൓𝑥

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path

𝐸 𝐺 ൓𝑥

Properties of Kripke Structures34

a b

x
c

11.04.2022
Institute for Applied Information Processing and Communications

• The robot can visit A and C infinitely often.

• The robot always visits A infinitely often,
but C only finitely often.

Write properties as formulasProperties

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path

Properties of Kripke Structures35

a b

x
c

11.04.2022
Institute for Applied Information Processing and Communications

• The robot can visit A and C infinitely often.

• The robot always visits A infinitely often,
but C only finitely often.

Write properties as formulasProperties

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path

𝐴 ሺ𝐺𝐹 𝑎 ∧ 𝐺𝐹 𝑐ሻ

𝐸 ሺ𝐺𝐹 𝑎 ∧ 𝐹𝐺൓𝑐ሻ

Properties of Kripke Structures36

a b

x
c

11.04.2022
Institute for Applied Information Processing and Communications

• If the robot visits A infinitely often,
it should also visit C finitely often.

Write properties as formulasProperties

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path

Properties of Kripke Structures37

a b

x
c

11.04.2022
Institute for Applied Information Processing and Communications

• If the robot visits A infinitely often,
it should also visit C finitely often.

Write properties as formulasProperties

𝐴 ሺ𝐺𝐹 𝑎 → 𝐺𝐹𝑐ሻ

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path

Computation Tree Logic - CTL*

11.04.2022
Institute for Applied Information Processing and Communications

38

 Defines properties of computation trees of
Kripke structures

a,b

b,c c

a,b

b,c c

cca,b

Kripke structure 𝑀,
labeled with 𝐴𝑃 ൌ ሼ𝑎, 𝑏, 𝑐ሽ

Unwinding of 𝑀 into
infinite computation tree

Paths and Suffixes

11.04.2022
Institute for Applied Information Processing and Communications

39

  = s0, s1, … is an infinite path in from a state s if
 s = s0 and
 for all i  0, (si, si+1)  R

Propositional Temporal Logic

11.04.2022
Institute for Applied Information Processing and Communications

40

Temporal operators:
 Describe properties that hold along 𝜋

Xp
Gp
Fp
pUq

pRq

Propositional Temporal Logic

11.04.2022
Institute for Applied Information Processing and Communications

41

Path quantifiers:
 A for all paths starting from s have property 𝝋
 E there exists a path starting from s have property 𝝋
 Use combination of A and E to describe branching

structure in tree

State Formulas and Path Formulas

11.04.2022
Institute for Applied Information Processing and Communications

42

𝝅𝟏 𝝅𝟐

State Formulas and Path Formulas

11.04.2022
Institute for Applied Information Processing and Communications

43

 Path Formulas:
 𝜋ଵ ⊨ Gb
 𝜋ଶ ⊭ Gb

𝝅𝟏 𝝅𝟐

State Formulas and Path Formulas

11.04.2022
Institute for Applied Information Processing and Communications

44

 Path Formulas:
 𝜋ଵ ⊨ Gb
 𝜋ଶ ⊭ Gb

𝝅𝟏 𝝅𝟐

 State Formulas:
 𝑠଴ ⊨ EG b
 𝑠଴ ⊭ AG b

State Formulas and Path Formulas

11.04.2022
Institute for Applied Information Processing and Communications

45

 Does 𝑠଴ satisfy the following formula?
 ଴

 ଴

𝝅𝟏 𝝅𝟐

State Formulas and Path Formulas

11.04.2022
Institute for Applied Information Processing and Communications

46

 Does ଴ satisfy the following formula?
 ଴

 ଴

𝝅𝟏 𝝅𝟐

Syntax of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

47

Two types of formulas in the inductive definition
 State formulas
 Path formulas

Syntax of CTL*: State Formulas

11.04.2022
Institute for Applied Information Processing and Communications

48

State formulas are true in a specific state

Syntax of CTL*: State Formulas

11.04.2022
Institute for Applied Information Processing and Communications

49

State formulas are true in a specific state

Inductive definition of state formulas:

Syntax of CTL*: State Formulas

11.04.2022
Institute for Applied Information Processing and Communications

50

State formulas are true in a specific state

Inductive definition of state formulas:


Syntax of CTL*: State Formulas

11.04.2022
Institute for Applied Information Processing and Communications

51

State formulas are true in a specific state

Inductive definition of state formulas:


  1 1 2 1 2 where 1 2 are state formulas

Syntax of CTL*: State Formulas

11.04.2022
Institute for Applied Information Processing and Communications

52

State formulas are true in a specific state

Inductive definition of state formulas:


  1 1 2 1 2 where 1 2 are state formulas
 where is a path formula

Syntax of CTL*: Path Formulas

11.04.2022
Institute for Applied Information Processing and Communications

53

Path formulas are true along a specific path

Syntax of CTL*: Path Formulas

11.04.2022
Institute for Applied Information Processing and Communications

54

Path formulas are true along a specific path

Inductive definition of path formulas:

Syntax of CTL*: Path Formulas

11.04.2022
Institute for Applied Information Processing and Communications

55

Path formulas are true along a specific path

Inductive definition of path formulas:
 If is a state formula, then is also a path formula

Syntax of CTL*: Path Formulas

11.04.2022
Institute for Applied Information Processing and Communications

56

Path formulas are true along a specific path

Inductive definition of path formulas:
 If is a state formula, then is also a path formula
  1 1

 2 1  2 1 1 1 1 2

1 2
where 1 2 are path formulas

Syntax of CTL*: Path Formulas

11.04.2022
Institute for Applied Information Processing and Communications

57

Path formulas are true along a specific path

Inductive definition of path formulas:
 If is a state formula, then is also a path formula
  1 1

 2 1  2 1 1 1 1 2

1 2
where 1 2 are path formulas

CTL* is the set of all state formulas

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

58

 Kripke Structure ଴

  = s0, s1, … is an infinite path in
 i – the suffix of , starting at si

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

59

 Kripke Structure ଴

  = s0, s1, … is an infinite path in
 i – the suffix of , starting at si

 For state formulas:
 𝑀, 𝑠 ⊨ 𝑓 … the state formula 𝑓 holds in state 𝑠 of 𝑀

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

60

 Kripke Structure ଴

  = ଴ ଵ is an infinite path in
 i – the suffix of , starting at si

 For state formulas:
 𝑀, 𝑠 ⊨ 𝑓 … the state formula 𝑓 holds in state 𝑠 of 𝑀

 For path formulas:
 𝑀, 𝜋 ⊨ 𝑔 … the path formula 𝑔 holds along 𝜋 in 𝑀

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

61

State formulas:
 M, s p  p  L(s)
 M, s E f  there is a path  from s such that M,

 f
 M, s A g  for every path  from s, M,  g
 Boolean combination (, , ) – the usual semantics

Semantics of path formulas - summary

11.04.2022
Institute for Applied Information Processing and Communications

62

If p,q are state formulas, then:

Xp
Gp
Fp
pUq

pRq

But in the general case, they can be path formulas

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

63

Path formulas:
 M,  ⊨ f, where f is a state formula  𝑀, 𝜋଴ ⊨ 𝑓

⊨ f
⊨ f

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

64

Path formulas:
 M,  ⊨ Xg, where g is a path formula  M, 1 ⊨ g

⊨ X g
⊨ g

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

65

Path formulas:
 M,  ⊨ Gg  for every i 0, M, i ⊨ g

⊨ G g
⊨ g

⊨ g
⊨ g

⊨ g

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

66

Path formulas:
 M,  ⊨ Gg  for every i 0, M, i ⊨ g

⊨ G g
⊨ g

⊨ g
⊨ g

⊨ g

 M,  ⊨ Fg  there exists k 0, such that M, k ⊨ g

⊨ g
⊨ F g

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

67

Path formulas:
 M,  ⊨ Gg  for every i 0, M, i ⊨ g

⊨ G g
⊨ g

⊨ g
⊨ g

⊨ g

 M,  ⊨ Fg  there exists k 0, such that M, k ⊨ g

⊨ g
⊨ F g

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

68

Path formulas:
 M,  ⊨ Fg  there exists k 0, such that M, k ⊨ g

⊨ g
⊨ F g

 M,  ⊨ g1 U g2  there exists k 0, such that M, k ⊨ g2
and for every 0 j<k, M, j ⊨ g1

⊨ g1 U g2
⊨ g1

⊨ g2

⊨ g1

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

69

Path formulas:
 M,  ⊨ Fg  there exists k 0, such that M, k ⊨ g

⊨ g
⊨ F g

 M,  ⊨ g1 U g2  there exists k 0, such that M, k ⊨ g2
and for every 0 j<k, M, j ⊨ g1

⊨ g1 U g2
⊨ g1

⊨ g2

⊨ g1

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

70

More about R („release“)

11.04.2022
Institute for Applied Information Processing and Communications

71

 Intuitively, once g1 becomes true, it “releases” g2 If g1
never becomes true then g2 stays true forever

 g1 R g2  (g2 U (g1g2))  G g2

Rewrite it using U, F, G, or X

More about R („release“)

11.04.2022
Institute for Applied Information Processing and Communications

72

 Intuitively, once g1 becomes true, it “releases” g2. If g1
never becomes true then g2 stays true forever

 g1 R g2  (g2 U (g1g2))  G g2

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

73

 M f  for all initial states s0  S0, M, s0 f

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

74

 M f  for all initial states s0  S0: M, s0 f

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

75

 M f  for all initial states s0  S0: M, s0 f

 Example: Does EX p or EX p ?

s0 s1

p ¬ p

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

76

 M f  for all initial states s0  S0, M, s0 f

 Example: Does EX p or EX p ?

s0 s1

p ¬ p

M ⊨ EX p
Solution

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

77

 M f  for all initial states s0  S0, M, s0 f

 Example: Does EX p or EX p ?

s0 s1

p ¬ p

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

78

 M f  for all initial states s0  S0, M, s0 f

 Example: Does EX p or EX p ?

s0 s1

p ¬ p

Neither

11.04.2022
Institute for Applied Information Processing and Communications

79 Exercise 1

Question:
 Given a, b  AP

How do all paths that satisfy (Fb) U a look like?

11.04.2022
Institute for Applied Information Processing and Communications

80 Exercise 1

Question:
 Given a, b  AP

How do all paths that satisfy (Fb) U a look like?

(Fb) U a

11.04.2022
Institute for Applied Information Processing and Communications

81 Exercise 2

Question:
For p  AP, what is the meaning of the following
formulas? That is, when does  satisfy each of the
formulas:
  GF p
  FG p

11.04.2022
Institute for Applied Information Processing and Communications

82 Exercise 2

Question:
For p  AP, what are the meaning of the following
formulas? That is, when does  satisfy each of the
formulas:
  GF p
  FG p

Infinitely often p along 

Finitely often ൓p along 

11.04.2022
Institute for Applied Information Processing and Communications

83 Exercise 2

Question:
For p  AP, what are the meaning of the following
formulas? That is, when does s satisfy each of the
formulas:
 s EGF p
 s EG EF p

  GF p
  FG p

Infinitely often p along 

Finitely often ൓p along 

11.04.2022
Institute for Applied Information Processing and Communications

84 Exercise 2

Question:
For p  AP, what are the meaning of the following
formulas? That is, when does s satisfy each of the
formulas:
 s EGF p
 s EG EF p

  GF p
  FG p

Infinitely often p along 

Finitely often ൓p along 

There exists a path with satisfies infinitely often p

There exists a path in which we can
reach p from all states

11.04.2022
Institute for Applied Information Processing and Communications

85 Exercise 3

Question:
When does  satisfy the formula:

  (Ga) U (Gb)

Answer:

 (Ga) U (Gb)  Gb  (Ga  FGb)

11.04.2022
Institute for Applied Information Processing and Communications

86 Exercise 3

Question:
When does  satisfy the formula:

  (Ga) U (Gb)

Answer:

 (Ga) U (Gb)  Gb  (Ga  FGb)

11.04.2022
Institute for Applied Information Processing and Communications

87 Properties of CTL*

The operators , , X, U, E are sufficient to express
any CTL* formula:
 f  g  (f  g)
 f R g  (f U g)
 F f  true U f
 G f   F f
 A (f)   E (f)

11.04.2022
Institute for Applied Information Processing and Communications

88 Negation Normal Form (NNF)

 Formulas in Negation Normal Form (NNF) are formulas in which
negations are applied only to atomic propositions

 Every CTL* formula is equivalent to a CTL* formula in NNF
 Negations can be “pushed” inwards.

 E f  A f
 G f  F f
 X f  X f
 (f U g)  (f R g)

11.04.2022
Institute for Applied Information Processing and Communications

89 Negation Normal Form (NNF)

 Negations can be “pushed” inwards.
 E f  A f
 G f  F f
 X f  X f
 (f U g)  (f R g)

 Example:
Transforming a formula into NNF:

 ((a U b)  F c)  ((a U b)  F c)  (((a) R (b))  (G c)

11.04.2022
Institute for Applied Information Processing and Communications

90 Negation Normal Form (NNF)

 Negations can be “pushed” inwards.
 E f  A f
 G f  F f
 X f  X f
 (f U g)  (f R g)

 Example:
Transforming a formula into NNF:

 ((a U b)  F c)  ((a U b)  F c) 
(((a) R (b))  (G c)

11.04.2022
Institute for Applied Information Processing and Communications

91 Useful sublogics of CTL*

 CTL, ACTL and ACTL* are branching-time temporal
logics
 Can describe the branching of the computation tree

by applying nested path quantifications
 LTL is a linear-time temporal logic
 Describes the paths in the computation tree, using

only one, outermost universal quantification

 CTL and LTL are most widely used

11.04.2022
Institute for Applied Information Processing and Communications

92 LTL/CTL/CTL*

LTL consists of state formulas of the form Af
 f is a path formula, containing no path quantifiers
 LTL is interpreted over infinite computation paths

CTL consists of state formulas, where path quantifiers and temporal
operators appear in pairs:
 AG, AU, AX, AF, AR, EG, EU, EX, EF, ER
 CTL is interpreted over infinite computation trees

CTL* allows any combination of temporal operators and path
quantifiers.
It includes both LTL and CTL

11.04.2022
Institute for Applied Information Processing and Communications

93 LTL

State formulas:
 Af where f is a path formula

Path formulas:
 p  AP

 f1, f1f2, f1f2, Xf1, Gf1, Ff1, f1Uf2, f1Rf2
where f1 and f2 are path formulas

LTL is the set of all state formulas

11.04.2022
Institute for Applied Information Processing and Communications

94 CTL

CTL is the set of all state formulas, defined below
(by means of state formulas only):
 p AP

 g1, g1g2, g1g2

 AX g1, AG g1, AF g1, A (g1 U g2), A (g1 R g2)

 EX g1, EG g1, EF g1, E (g1 U g2), E (g1 R g2)

where g1 and g2 are state formulas

11.04.2022
Institute for Applied Information Processing and Communications

95

Semantics of CTL*

11.04.2022
Institute for Applied Information Processing and Communications

96

 M f  for all initial states s0  S0: M, s0 f

 Example: Does EX p or EX p ?

e1

e5 e4

e2

e3

11.04.2022
Institute for Applied Information Processing and Communications

97

