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function PDR(Model 𝑀)

if SAT(𝑆଴ ∧ ൓𝑃ሻ or SAT(𝑆଴ ∧ 𝑅 ∧ ൓𝑃′ሻ then FAIL
𝐹଴ := 𝑆଴; 𝐹ଵ := 𝑃; 𝑘 :=1;

while(true)

while(𝑠 := SAT(𝐹௞ ∧  𝑅 ∧ ൓𝑃’)) 

removeBad(k, 𝑠)

𝑘++; 𝐹௞ := 𝑃

propagateClauses(k)

if ∃0 ൑ 𝑖 ൏ 𝑘 െ 1: 𝐹௜: ൌ 𝐹௜ାଵ then SUCCEED

// post: ൓𝑆𝐴𝑇ሺ𝐹௜ ∧ 𝑠ሻ 

function removeBad(𝑖 ∈ 𝑁, state sሻ

if SAT(𝑆଴ ∧ 𝑐ሻ then FAIL
while(𝑡 := SAT(𝐹௜ିଵ ∧ 𝑅 ∧ 𝑠′))

removeBad(𝑖 െ 1, 𝑡)

𝑔 := generalize(𝑖, 𝑐)

∀0 ൏ 𝑗 ൑ 𝑖: 𝐹௝ ≔ 𝐹௝ ∧ ൓s 
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function PDR(Model 𝑀)

if SAT(𝑆଴ ∧ ൓𝑃ሻ or SAT(𝑆଴ ∧ 𝑅 ∧ ൓𝑃′ሻ then FAIL
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removeBad(k, 𝑠)

𝑘++; 𝐹௞ := 𝑃
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if ∃0 ൑ 𝑖 ൏ 𝑘 െ 1: 𝐹௜: ൌ 𝐹௜ାଵ then SUCCEED

// post: ൓𝑆𝐴𝑇ሺ𝐹௜ ∧ 𝑠ሻ 

function removeBad(𝑖 ∈ 𝑁, state sሻ

if SAT(𝑆଴ ∧ 𝑐ሻ then FAIL
while(𝑡 := SAT(𝐹௜ିଵ ∧ 𝑅 ∧ 𝑠′))

removeBad(𝑖 െ 1, 𝑡)

𝑔 := generalize(𝑖, 𝑐)

∀0 ൏ 𝑗 ൑ 𝑖: 𝐹௝ ≔ 𝐹௝ ∧ ൓s 

All frames are still different, so P is not 
verified. 
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function PDR(Model 𝑀)
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∀0 ൏ 𝑗 ൑ 𝑖: 𝐹௝ ≔ 𝐹௝ ∧ ൓𝑔

function generalizeNaive(i, state 𝑠)

return a shortest cube 𝑐 such that

- 𝑐 ← 𝑠

- ൓SAT F୧ିଵ ∧ 𝑅 ∧ 𝑐′

- ൓SATሺ𝑆଴ ∧ 𝑐ሻ
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We repeat the 
same steps. 

𝐹ଵ ൌ 𝐹ଶ , so P is 
verified. 
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– The set ൓𝑥ଵ is inductive.

𝐼 ⊆ 𝑆 is inductive if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. I ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐼 ⊆ 𝐼)
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– The set ൓𝑥ଵ is inductive.                                        TRUE

𝐼 ⊆ 𝑆 is inductive if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
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– The set  ൓𝑥ଷ is inductive.                                       

𝐼 ⊆ 𝑆 is inductive if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. I ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐼 ⊆ 𝐼)
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– The set  ൓𝑥ଷ is inductive.                                    010 -> 011                
FALSE   

𝐼 ⊆ 𝑆 is inductive if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. I ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐼 ⊆ 𝐼)
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– The set  ൓𝑥ଶ is inductive relative to ൓𝑥ଵ.                 

𝐼 ⊆ 𝑆 is inductive relative to F if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. 𝐼 ∧ 𝐹 ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐹 ∩ 𝐼 ⊆ 𝐼)
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– The set  ൓𝑥ଶ is inductive relative to ൓𝑥ଵ.                      000 -> 010      
FALSE   

𝐼 ⊆ 𝑆 is inductive relative to F if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. 𝐼 ∧ 𝐹 ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐹 ∩ 𝐼 ⊆ 𝐼)
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– The set  ൓𝑥ଷ is inductive relative to ൓𝑥ଵ.
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– The set  ൓𝑥ଷ is inductive relative to ൓𝑥ଵ.    010 -> 011               
FALSE   

𝐼 ⊆ 𝑆 is inductive relative to F if
1. 𝑆଴ → 𝐼 (𝑆଴ ⊆ 𝐼ሻ
2. 𝐼 ∧ 𝐹 ∧ 𝑅 → 𝐼ᇱ (𝑝𝑜𝑠𝑡𝑖𝑚𝑎𝑔𝑒 𝐹 ∩ 𝐼 ⊆ 𝐼)



21

Bettina Könighofer
January 24, 2020

Graz University of Technology
Institute for Applied Information 
Processing and Communications

Temporal Logic

Model Checking SS21

A B

CX

A A B

C



11.04.2022
Institute for Applied Information Processing and Communications

23

• “If today is Tuesday, tomorrow is Wednesday.”

• “This lecture is exciting and not boring.”

Warm Up

Translate sentences to formulas



11.04.2022
Institute for Applied Information Processing and Communications

24

• “If today is Thursday, then tomorrow is Friday.”

• “This lecture is exciting and not boring.”

Warm Up

Translate sentences to formulas

p… today is Tuesday, q… tomorrow is Wednesday 
𝑝 → 𝑞

p… This lecture is exciting , 
q… This lecture is boring

𝑝 ∧ ൓𝑞
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 Whenever it rains, I have an umbrella

 When it rains, worms come out after a while

 I will not pay before you deliver the goods
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• Always when the robot visits A, it 
visits C within the next two steps.

• The robot can visit C within the next two 
steps after visiting A

Write properties as formulasProperties
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AP – a set of atomic propositions, p,qAP

Temporal operators:
Xp
Gp
Fp
pUq  

pRq

Path quantifiers: A for all paths
E there exists a path
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• Always when the robot visits A, it 
visits C within the next two steps.

• The robot can visit C within the next two 
steps after visiting A

Write properties as formulasProperties

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path
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• Always when the robot visits A, it 
visits C within the next two steps.

• The robot can visit C within the next two 
steps after visiting A

Write properties as formulasProperties

𝐴 𝐺 ሺ𝑎 → 𝑋𝑐 ∨ 𝑋𝑋𝑐ሻ  

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path

𝐸 𝐺 ሺ𝑎 → 𝑋𝑐 ∨ 𝑋𝑋𝑐ሻ  
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• The robot never visits X

• It is possible that the robot never visits X

Write properties as formulasProperties

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path
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• The robot never visits X

• It is possible that the robot never visits X

Write properties as formulasProperties

𝐴 𝐺 ൓𝑥  

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path

𝐸 𝐺 ൓𝑥  
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• The robot can visit A and C infinitely often.

• The robot always visits A infinitely often, 
but C only finitely often. 

Write properties as formulasProperties

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path
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• The robot can visit A and C infinitely often.

• The robot always visits A infinitely often, 
but C only finitely often. 

Write properties as formulasProperties

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path

𝐴 ሺ𝐺𝐹 𝑎 ∧ 𝐺𝐹 𝑐ሻ  

𝐸 ሺ𝐺𝐹 𝑎 ∧ 𝐹𝐺൓𝑐ሻ  
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• If the robot visits A infinitely often, 
it should also visit C finitely often.

Write properties as formulasProperties

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path
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• If the robot visits A infinitely often, 
it should also visit C finitely often.

Write properties as formulasProperties

𝐴 ሺ𝐺𝐹 𝑎 → 𝐺𝐹𝑐ሻ  

Temporal Operators
X… next
G… globally
F… eventually

Path quantifiers
A for all paths
E there exists a path
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 Defines properties of computation trees of
Kripke structures

a,b

b,c c

a,b

b,c c

cca,b

Kripke structure 𝑀,
labeled with 𝐴𝑃 ൌ  ሼ𝑎, 𝑏, 𝑐ሽ

Unwinding of 𝑀 into 
infinite computation tree
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  = s0, s1, … is an infinite path in from a state s if
 s = s0 and
 for all i  0,  (si, si+1)  R
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Temporal operators:
 Describe properties that hold along 𝜋

Xp
Gp
Fp
pUq  

pRq
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Path quantifiers: 
 A for all paths starting from s have property 𝝋
 E there exists a path starting from s have property 𝝋
 Use combination of A and E to describe branching 

structure in tree
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𝝅𝟏 𝝅𝟐
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 Path Formulas:
 𝜋ଵ ⊨ Gb
 𝜋ଶ ⊭ Gb

𝝅𝟏 𝝅𝟐
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 Path Formulas:
 𝜋ଵ ⊨ Gb
 𝜋ଶ ⊭ Gb

𝝅𝟏 𝝅𝟐

 State Formulas:
 𝑠଴ ⊨ EG b
 𝑠଴ ⊭ AG b
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 Does 𝑠଴ satisfy the following formula?
 ଴

 ଴

𝝅𝟏 𝝅𝟐
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 Does ଴ satisfy the following formula?
 ଴

 ଴

𝝅𝟏 𝝅𝟐
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Two types of formulas in the inductive definition
 State formulas
 Path formulas
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State formulas are true in a specific state
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State formulas are true in a specific state

Inductive definition of state formulas:
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State formulas are true in a specific state

Inductive definition of state formulas:

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State formulas are true in a specific state

Inductive definition of state formulas:


  1 1 2 1 2 where 1 2 are state formulas
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State formulas are true in a specific state

Inductive definition of state formulas:


  1 1 2 1 2 where 1 2 are state formulas
 where is a path formula
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Path formulas are true along a specific path
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Path formulas are true along a specific path

Inductive definition of path formulas:
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Path formulas are true along a specific path

Inductive definition of path formulas:
 If is a state formula, then is also a path formula
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Path formulas are true along a specific path

Inductive definition of path formulas:
 If is a state formula, then is also a path formula
  1 1 

 2 1  2 1 1 1 1 2

1 2  
where 1 2 are path formulas
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Path formulas are true along a specific path

Inductive definition of path formulas:
 If is a state formula, then is also a path formula
  1 1 

 2 1  2 1 1 1 1 2

1 2  
where 1 2 are path formulas

CTL* is the set of all state formulas
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 Kripke Structure ଴

  = s0, s1, … is an infinite path in 
 i – the suffix of , starting at si
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 Kripke Structure ଴

  = s0, s1, … is an infinite path in 
 i – the suffix of , starting at si

 For state formulas:
 𝑀, 𝑠 ⊨ 𝑓 … the state formula 𝑓 holds in state 𝑠 of 𝑀
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 Kripke Structure ଴

  = ଴ ଵ is an infinite path in 
 i – the suffix of , starting at si

 For state formulas:
 𝑀, 𝑠 ⊨ 𝑓 … the state formula 𝑓 holds in state 𝑠 of 𝑀

 For path formulas:
 𝑀, 𝜋 ⊨ 𝑔 … the path formula 𝑔 holds along 𝜋 in 𝑀
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State formulas:
 M, s p      p  L(s)
 M, s E f    there is a path  from s such that  M, 

 f
 M, s A g   for every path  from s,  M,  g
 Boolean combination (, , ) – the usual semantics
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If p,q are state formulas, then: 

Xp
Gp
Fp
pUq  

pRq

But in the general case, they can be path formulas
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Path formulas:
 M,  ⊨ f, where f is a state formula  𝑀, 𝜋଴ ⊨ 𝑓

⊨ f
⊨ f
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Path formulas:
 M,  ⊨ Xg, where g is a path formula  M, 1 ⊨ g

⊨ X g
⊨ g
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Path formulas:
 M,  ⊨ Gg  for every i 0, M, i ⊨ g 

⊨ G g
⊨ g

⊨ g
⊨ g

⊨ g
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Path formulas:
 M,  ⊨ Gg  for every i 0, M, i ⊨ g 

⊨ G g
⊨ g

⊨ g
⊨ g

⊨ g

 M,  ⊨ Fg  there exists k 0, such that M, k ⊨ g

⊨ g
⊨ F g
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Path formulas:
 M,  ⊨ Gg  for every i 0, M, i ⊨ g 

⊨ G g
⊨ g

⊨ g
⊨ g

⊨ g

 M,  ⊨ Fg  there exists k 0, such that M, k ⊨ g

⊨ g
⊨ F g
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Path formulas:
 M,  ⊨ Fg  there exists k 0, such that M, k ⊨ g

⊨ g
⊨ F g

 M,  ⊨ g1 U g2  there exists k 0, such that M, k ⊨ g2
and for every 0 j<k, M, j ⊨ g1

⊨ g1 U g2
⊨ g1

⊨ g2

⊨ g1
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Path formulas:
 M,  ⊨ Fg  there exists k 0, such that M, k ⊨ g

⊨ g
⊨ F g

 M,  ⊨ g1 U g2  there exists k 0, such that M, k ⊨ g2
and for every 0 j<k, M, j ⊨ g1

⊨ g1 U g2
⊨ g1

⊨ g2

⊨ g1
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 Intuitively, once g1 becomes true, it “releases” g2 If g1
never becomes true then g2 stays true forever

 g1 R g2  (g2 U (g1g2))  G g2

Rewrite it using U, F, G, or X
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 Intuitively, once g1 becomes true, it “releases” g2. If g1
never becomes true then g2 stays true forever

 g1 R g2  (g2 U (g1g2))  G g2
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 M f  for all initial states s0  S0,   M, s0 f
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 M f  for all initial states s0  S0: M, s0 f
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 M f  for all initial states s0  S0: M, s0 f

 Example: Does EX p or EX p ?

s0 s1

p ¬ p
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 M f  for all initial states s0  S0,   M, s0 f

 Example: Does EX p or EX p ?

s0 s1

p ¬ p

M ⊨ EX p
Solution
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 M f  for all initial states s0  S0,   M, s0 f

 Example: Does EX p or EX p ?

s0 s1

p ¬ p
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 M f  for all initial states s0  S0,   M, s0 f

 Example: Does EX p or EX p ?

s0 s1

p ¬ p

Neither
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79 Exercise 1

Question:
 Given a, b  AP

How do all paths that satisfy (Fb) U a look like?
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80 Exercise 1

Question:
 Given a, b  AP

How do all paths that satisfy (Fb) U a look like?

(Fb) U a
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81 Exercise 2

Question:
For p  AP, what is the meaning of the following 
formulas? That is, when does  satisfy each of the 
formulas:
  GF p
  FG p
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82 Exercise 2

Question:
For p  AP, what are the meaning of the following 
formulas? That is, when does  satisfy each of the 
formulas:
  GF p
  FG p

Infinitely often p along 

Finitely often ൓p along 
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83 Exercise 2

Question:
For p  AP, what are the meaning of the following 
formulas? That is, when does s satisfy each of the 
formulas:
 s EGF p         
 s EG EF p

  GF p
  FG p

Infinitely often p along 

Finitely often ൓p along 
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84 Exercise 2

Question:
For p  AP, what are the meaning of the following 
formulas? That is, when does s satisfy each of the 
formulas:
 s EGF p         
 s EG EF p

  GF p
  FG p

Infinitely often p along 

Finitely often ൓p along 

There exists a path with satisfies infinitely often p

There exists a path in which we can
reach p from all states
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85 Exercise 3

Question: 
When does  satisfy the formula:

  (Ga) U (Gb) 

Answer:

 (Ga) U (Gb)   Gb  (Ga  FGb) 
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86 Exercise 3

Question: 
When does  satisfy the formula:

  (Ga) U (Gb) 

Answer:

 (Ga) U (Gb)   Gb  (Ga  FGb) 
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87 Properties of CTL*

The operators  , , X, U, E  are sufficient to express 
any CTL* formula:
 f  g    (f  g )
 f R g    (f U g )
 F f       true U f
 G f       F f
 A (f)    E (f )
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88 Negation Normal Form (NNF)

 Formulas in Negation Normal Form (NNF) are formulas in which 
negations are applied only to atomic propositions

 Every CTL* formula is equivalent to a CTL* formula in NNF
 Negations can be “pushed” inwards. 

 E f  A f
 G f  F f
 X f  X f
 ( f U g )  ( f R g )
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89 Negation Normal Form (NNF)

 Negations can be “pushed” inwards. 
 E f  A f
 G f  F f
 X f  X f
 ( f U g )  ( f R g )

 Example: 
Transforming a formula into NNF:

 ( (a U b )  F c)  ((a U b)  F c)  (((a) R (b))  (G c)
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90 Negation Normal Form (NNF)

 Negations can be “pushed” inwards. 
 E f  A f
 G f  F f
 X f  X f
 ( f U g )  ( f R g )

 Example: 
Transforming a formula into NNF:

 ( (a U b )  F c)  ((a U b)  F c) 
(((a) R (b))  (G c)
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91 Useful sublogics of CTL*

 CTL, ACTL and ACTL* are branching-time temporal 
logics
 Can describe the branching of the computation tree 

by applying nested path quantifications
 LTL is a linear-time temporal logic
 Describes the paths in the computation tree, using 

only one, outermost universal quantification

 CTL and LTL are most widely used
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92 LTL/CTL/CTL*

LTL consists of state formulas of the form Af
 f is a path formula, containing no path quantifiers
 LTL is interpreted over infinite computation paths

CTL consists of state formulas, where path quantifiers and temporal 
operators appear in pairs:
 AG, AU, AX, AF, AR, EG, EU, EX, EF, ER
 CTL is interpreted over infinite computation trees

CTL* allows any combination of temporal operators and path 
quantifiers.
It includes both LTL and CTL
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93 LTL

State formulas:
 Af where f is a path formula

Path formulas:
 p  AP

 f1,  f1f2, f1f2,  Xf1, Gf1,  Ff1, f1Uf2, f1Rf2
where f1 and f2 are path formulas

LTL is the set of all state formulas
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94 CTL

CTL is the set of all state formulas, defined below
(by means of state formulas only):
 p AP

 g1,  g1g2,  g1g2

 AX g1, AG g1, AF g1, A (g1 U g2), A (g1 R g2)

 EX g1, EG g1, EF g1, E (g1 U g2), E (g1 R g2)

where g1 and g2 are state formulas
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 M f  for all initial states s0  S0: M, s0 f

 Example: Does EX p or EX p ?

e1

e5 e4

e2

e3
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