Computer Organization and Networks

Chapter 8: Networking I

Winter 2021/2022

IPv4 packet overview

Offsets Octet 0 1 2 3
Octet Bit o1 2,3 4,565 6 7 8|9 (1011 |12 |13 |14 |15 |16 |17 |18 |19 |20 |21 |22 23 24 25 26 27 |28 | 29|30 31
0 0 Version Header Length Total Length
4 32
8 64
12 86 Source IP Address
16 128 Destination IP Address

* Version: always 0100 (version 4)

* Twin “Length” fields
* Length of just the header
e Optional header extensions may make it longer!

* Length of this packet

IPv4 packet overview

Offsets Octet 0 1 2 3
Octet Bit o1 2,3 4,565 6 7 8|9 (1011 |12 |13 |14 |15 |16 |17 |18 |19 |20 |21 |22 23 24 25 26 27 |28 | 29|30 31
0 0
4 32
B &4 Time To Live Header Checksum
12 86
16 128

e Safeguards
* Header Checksum protects header integrity
* guards against header corruption on lower layer

e Time To Live limits how far a packet can travel
» after 256 hops, the packet is dropped
e guards against routing issues (loops etc.)

IPv4 packet overview

Offsets Octet 0 1 2 o
Octet Bit o123 4|5 6 78|91/ 1M 12 (13|(14|15 |16 |17 18 19 20|21 |22 |23 24 25 26 27 2B |29 30
0 0
4 22 l[dentification Flags Fragment Offset
B 64
12 =15
16 128

* Fragmentation happens if a packet is too large for a given connection
* Packet is split into two or more packets
* Recipient re-assembles the fragments

* Fragments are routed as separate packets
* Might take different routes, arrive out-of-order, etc.

IPv4 packet overview

Offsets Octet 0 1 2 o
Octet Bit o123 4|5 6 78|91/ 1M 12 (13|(14|15 |16 |17 18 19 20|21 |22 |23 24 25 26 27 2B |29 30
0 0
4 22 l[dentification Flags Fragment Offset
B 64
12 =15
16 128

* |[dentification is the same across all fragments
* Flags: whether this is not the last packet (More Fragments flag)
* Fragment offset: this fragment’s position within the original message

IPv4 fragmentation

Packet Id: 1
Length: 300
More Fragments: Ho
Fragment off=set: 0

Data:
da[ol, ..., d[2539]

Packet Id:
Length:

1
300

More Fragments: Ho
Fragment off=set: 0

Data:

d[o],

., d[299]

Packet Id: 1
Length: 128
More Fragment=z: Yes
Fragment offset: 0

Data:
a[oy, ..., 4[127]

—| Limit: 128 bytes

Packet I4d: 1
Length: 128
More Fragments: Yes
Fragment offset: 128

Data:
d[izs], ..., d[255]

Packet Id: 1
Length: 44
More Fragments: No
Fragment offset: 256

Data:
d[256], ..., d[2959]

www.iaik.tugraz.at

71

Packet Id:
Length:

1
300

More Fragments: Ho
Fragment off=set: 0

Data:

d[o],

., d[299]

Packet Id: 1
Length: 128
More Fragment=z: Yes
Fragment offset: 0

Data:
a[oy, ..., 4[127]

—| Limit: 128 bytes

Packet I4d: 1
Length: 128
More Fragments: Yes
Fragment offset: 128

Data:
d[izs], ..., d[255]

www.iaik.tugraz.at

Packet Id:
Length:

More Fragments:
Fragment off=zet:

Data:

da[o], ..., d[127]

128
Yes

Packet Id:
Length:

More Fragments:
Fragment offset:

Data:

d[128], ..., d[197]

1
70
Yes
128

—| Limit: 70 bytes

Packet Id: 1
Length: 44
More Fragments: No
Fragment offset: 256

Data:
d[256], ..., d[2959]

Packet Id:
Length:

More Fragments:
Fragment offset:

Data:

d[198], ..., d[255]

1
58
Yes
198

Packet Id:
Length:

More Fragments:
Fragment off=set:

Data:

d[256], ..., d[299]

1
44
No

256

72

IPv4 address space

* |IPv4 addresses are 32 bits long
 How many different IP addresses can exist?

IPv4 address exhaustion

* |IPv4 addresses are 32 bits long
* There can be at most 23? different IPv4 addresses
e 232 =4 billion, 294 million, 967 thousand, two hundred and ninety-six
* Global population = 7.9 billion (September 2021)

* How many devices do you own that use IPv4?
* Your home PC
* Your phone
e Your ISP router (twice!)
* Laptops? Game consoles? Cars? Fridges? Doorbells?

www.iaik.tugraz.at

IPv4 address exhaustion

https.//www.arin.net/vault/announcements/2015/20150924.html|

ARIN IPv4 Free Pool Reaches Zero

Posted: Thursday, 24 September 2015

On 24 September 2015, ARIN issued the final IPv4 addresses in its free pool. ARIN will

https://www.ripe.net/publications/news/about-ripe-ncc-and-ripe/the-ripe-ncc-has-run-out-of-ipv4-addresses

The RIPE NCC has run out of IPv4
Addresses

Today, at 15:35 (UTC+1) on 25 November 2013, we made our final /22 IPv4
allocation from the last remaining addresses in our available pool. We have
now run out of IPv4 addresses.

https://www.lacnic.net/4848/2/lacnic/ipv4-exhaustion:-lacnic-has-assigned-the-last-remaining-address-block

IPv4 Exhaustion: LACNIC Has Assigned the Last
Remaining Address Block

19 August 2020
The Latin American and Caribbean Internet Address Registry (LACNIC) announces that the last available IPv4 address block has been

reserved.

75

IPv4 address exhaustion

* The internet is out of IPv4 addresses...

* Somehow, your new phone still works?

* There are ways around address exhaustion
* We’ll talk about this later!

IPv6

* Internet Protocol, version 6

e Successor to IPv4

* Not natively interoperable with IPv4
* IPv4-only devices cannot communicate with IPv6-only devices
* Most modern devices implement both IPv4 and IPv6
* Eventually, IPv4 will be phased out...

www.iaik.tugraz.at

IPv6 addressing

Ethernet adapter Ethernet:

Link-local IPv6 Address : fTe80::10e5:1t700:1t6ab:7afc

e 128-bit address

* Notation: 16-bit hexadecimal blocks separated by colons (:)
e Zero blocks can be omitted using double colon (: :)

e fe80::10e5:£f700:f6ab:7afcisthe same as
fe 80 00 00 OO0 00 00 00 10 e5 £f7 00 f6 ab 7a fc

78

www.iaik.tugraz.at

IPv6 addressing

Ethernet adapter Ethernet:

Link-local IPv6 Address : Te80::10e5:1t700:1t6ab:7afc

* 64-bit network prefix, 64-bit interface identifier

* A single interface (e.g.: a network card) may have multiple addresses
* Addresses share the interface identifier

* Addresses have a scope in which they are valid

79

IPv6 scoping

* Global addresses
* Valid in any network connected to the internet
* May be routed on the public internet

* Unique-local addresses (in £c00::/7)

* Only valid within “the local network(s)”
* Example: valid within all the classroom networks of a school

* Routed between those networks, but not on the public internet

* Link-local addresses (in £e80: : /64)
* Only valid within the Link Layer network

IPv6 packet overview

 Similar fields to IPv4 packets
* Version is always 0110 (version 6)
* Length, Source and Destination fields
* Optional extension header blocks

* Header checksum removed
* Relies on Link Layer to provide error detection

* Fragmentation (mostly) removed
* No fragmentation by routers

* Fragmentation by hosts only as an extension
* Application Layer is expected to perform fragmentation

IPv6 recap

e Successor to IPv4

 “Permanent” solution to IP address exhaustion
 We’'ll talk about IPv4 workarounds in a bit!

* Some protocol-level improvements
* Not interoperable with IPv4

e Supported by most modern end-user devices
* Server-side support is... still lacking [https://ipvé.watch]

» 128-bit addresses (64-bit network part, 64-bit interface identifier)
» 2% networks, each consisting of 254 hosts

https://ipv6.watch/

oSN U AVl | THEY DEVOURED HO% OF THE TE A MYSTERY UMLESS IN THE SWARM:
- (ME : e sesld WHAT DO YOU L

EARTH, AND THEN JusT...com! WHATS THE VoLuME OF | iR o
E R T oo - | TevRE TyST SITING THERE! TR el "N UT OF ADDRESSES
THEYVE S70A%D! N LOOK, WE SHOUD'VE
A FEW CUBIC b MIGRATED AWkY oM
MICRONS. 2.l |Pv6 ARE AGO...
UMY?
» .
T THINK. THE
YEAR 1998
JUST BouGHT _/
U5 SOME TIME.

xkcd #865 “Nanobots” | Randall Munroe | https://xkcd.com/

www.iaik.tugraz.at

The Transport Layer

84

The Transport Layer

 Computers A and B are capable of sending data to each other
* Goal: Allow multiple applications to communicate reliably

 Concerns:

* How to distinguish which application data is meant for? (multiplexing)
 What if data is lost on the lower layers? (reliability)

 How much data can the network handle? (congestion control)

 How much data can the receiver handle? (flow control)

The Transport Layer

* The internet has two widely-used protocols at the Transport Layer:

* Transmission Control Protocol
* Focused on reliable delivery
e Connection-based

e User Datagram Protocol

* Focused on speed
e Connectionless

The Transport Layer: Ports

* Concept used for both TCP and UDP

* Source and destination identified by port number
* 16 bits (65536 available ports)

 TCP and UDP ports are separate
* The protocols implement the same idea, but each only cares about its own ports...

e Common notation: Port number after IP address
«127.0.0.1:8000 s port 8000 at host 127.0.0.1
e [::1]1:8000 is port 8000 at host ::1

UDP

* Fire-and-forget transmission
* Real-time applications

e Data may never arrive, may arrive out of order, ...
* Data loss must be tolerable for the upper-layer application

* Extremely simple and straightforward

UDP datagram header
Offsets Octet 0 1 2 o

Octet | Bit | 0| 1| 2 3| 4| 5| 6 7| 8| 9/10|11 (12|13 |14 |15 16|17 |18 19 20|21 |22 |23 |24 25 26|27 28|29 | 30|31
0 0 Source port Destination port

4 32 Length Checksum

TCP

* Highly reliable transmission of a byte stream
* Acknowledgments and re-transmission
* Guaranteed to maintain data ordering

* Non-trivial protocol overhead
* Still better than re-inventing the wheel if you need it!

TCP

e TCP connections have two sides: server and client

 Server listens on a specific port
» Server port is fixed for all connections

 Client connects to that port on the server

* Client uses a “random” ephemeral port, different for each connection
* See for yourself: netstat —onb (Win)or netstat -tnap (Linux, Mac)

* Connections are uniquely identified by client IP + client port

The Transport Layer: Ports 2

* Two applications can’t use the same port number

* Client needs to know which port number to connect to

* Port numbers are standardized by IANA

e 0—1023: well-known ports
e Examples: 22 (SSH), 80 (HTTP), 123 (NTP), 194 (IRC), 443 (HTTPS), ...
* 1024-49151.: registered ports
* Most server applications will use this range (even unregistered ones...)

* 49152-65535: dynamic ports

e Most OS will use this range for ephemeral (client) ports

TCP packet overview

Offsets Octet 0 1 2 3

Octet Bit (7(6(5/(4/ 3(2(1/0|7(6|5(4|3(2|1(0|7|6|5/4/3|2|1|/0|7|6|5|/4|3|2|1|0

0 0 Source port Destination port
4 32

8 64

12 96

16 128 Checksum

e Source + destination ports allow identification of connection
* Checksum over entire header + data

TCP data ordering

Offsets Octet 0 1 2 o

Octet Bt 7/ &6(5 4/3/ 2|1 0 7|86 5 4|3 2|1|0|7 6/ 543 2107 6|54/ 3 210
0 0

4 o2 Sequence number

8 64 Acknowledgment number (if ACK set)

A
12 96 C
K

16 128

* TCP maintains a sequence number across the entire connection
* Separate number for each end’s packets

* Receipt of contiguous data confirmed via acknowledgment number
* Acknowledgement number := next expected sequence number

* This allows ordering of data and re-sending of lost packets!

TCP data ordering

Offsets Octet 0 1 2 o

Octet Bt 7/ &6(5 4/3/ 2|1 0 7|86 5 4|3 2|1|0|7 6/ 543 2107 6|54/ 3 210

0 0

4 o2 Sequence number

g 64 Acknowledgment number (if ACK set)
A s

12 -1 C b
K M

16 128

e Connection establishment: Three-way handshake
e Client -> Server: SYN
e Server -> Client: SYN + ACK
e Client -> Server: ACK

TCP data ordering

Offsets Octet 0 1

2 3

Octet Bit 7/,6(5/ 4(3(2|/1/0| 7| 6|5|4|3|2|1|0|7|6(5/4|/3(2(1/0(7|6|5(4|3/2(1/|0
0 0

e 32 Sequence number

8 64

S
12 96 PG
16 128

e Client -> Server: SYN

* Sequence number: seq_c, chosen randomly

TCP data ordering

Offsets Octet 0 1 2 3
Octet Bt 7/ &6(5 4/3/ 2|1 0 7|86 5 4|3 2|1|0|7 6/ 543 2107 6|54/ 3 210

0 0

4 o2 Sequence number

g 64 Acknowledgment number (if ACK set)
A s

12 -1 C b
K M

16 128

e Server -> Client: SYN + ACK

* Sequence number: seq_s, chosen randomly
* Acknowledgement: seq_c+1

TCP data ordering

Offsets Octet 0 1 2 o

Octet Bt 7/ &6(5 4/3/ 2|1 0 7|86 5 4|3 2|1|0|7 6/ 543 2107 6|54/ 3 210

0 0

4 o2 Sequence number

g 64 Acknowledgment number (if ACK set)
A

12 -1 C
K

16 128

* Client -> Server: ACK

* Sequence number: seq_c+1
* Acknowledgement: seq_s+1

* Now both sides know that the other side has their sequence number
* Ready to communicate!

www.iaik.tugraz.at

TCP flow control

* Imagine: a supercomputer talking to a desk phone via a 100Gbps link

ulewop 21jqnd :auoyd ysap e jo We di))

98

o sol4e) 3 INYO @ 493ndwod43dNns JwwiNg 40 030yd

0°C A9 DD d9pun pasn ‘sau

www.iaik.tugraz.at

TCP flow control

* Imagine: a supercomputer talking to a desk phone via a 100Gbps link

99

www.iaik.tugraz.at

TCP flow control

* Imagine: a supercomputer talking to a desk phone via a 100Gbps link

100

www.iaik.tugraz.at

TCP flow control

* Imagine: a supercomputer talking to a desk phone via a 100Gbps link

* The desk phone doesn’t stand a chance to keep up!

101

TCP flow control

1 2 o

Offsets Octet 0
Octet | Bit 7 6 5 4 3 2 1 0 7 6/5 4 3|21 0 7|/6/543 21076543210
0 0
4 32
8 64 Acknowledgment number (if ACK set)

12 96 Window Size

16 128

* Imagine: a supercomputer talking to a desk phone via a 100Gbps link

* Window size indicates how much more data the host can handle

e The other end must throttle its transmission rate to accommodate
* Window size is relative to the last ACK'd packet

www.iaik.tugraz.at

TCP congestion control

* Imagine: two supercomputers talking via a dial-up connection
* Keep in mind: the “dial-up connection” could be some intermediate network

9ld @ Y10|s pa01-23iy] e Jo 0loyd

‘uinbijnod au
0°% AG-DD Japun pasn ‘SoziaH uelnf @ Jandwodiadns o)X Aed) Jo 0loyd

0°C ON-Ad 2D J3pun pasn

103

www.iaik.tugraz.at

TCP congestion control

* Imagine: two supercomputers talking via a dial-up connection
* Keep in mind: the “dial-up connection” could be some intermediate network

104

www.iaik.tugraz.at

TCP congestion control

* Imagine: two supercomputers talking via a dial-up connection
* Keep in mind: the “dial-up connection” could be some intermediate network

105

www.iaik.tugraz.at

TCP congestion control

* Imagine: two supercomputers talking via a dial-up connection
* Keep in mind: the “dial-up connection” could be some intermediate network

Hm, data was lost?
- s = _% Ly

£ _NF

—

106

TCP congestion control

* Imagine: two supercomputers talking via a dial-up connection
* Keep in mind: the “dial-up connection” could be some intermediate network

* If you just keep shoving data...

e ... it will get stuck in a queue somewhere ...

* ...soyou think it was lost and send it again ...
e ...Nnow your queue is twice the size ...
e ...and nothing useful gets done.

e How do we avoid that?

TCP congestion control

* Each side throttles its data transmission rate independently
* No cooperation required
 Different OS have different algorithms

* Basic concept:

e Start at a relatively slow rate, then increase speed until data gets lost
* Once data is lost, assume we overloaded the connection and slow down again

e Details differ from OS to OS

Transport Layer recap

* Two main protocols: TCP and UDP
e TCP: highly reliable, but comes with overhead
 UDP: low overhead, but no reliability guarantees

* Port numbers identify target application

e By convention, low port numbers (0—-1023) are reserved for specific services
* 1024-49151 are used by other servers
* 49152-65535 are used for ephemeral ports

TCP recap

e Client establishes connection to Server

* Server lists on a pre-agreed port
* Client uses a “random” port (49152-65535)

* Sequence numbers and acknowledgement numbers
* Client and server have separate counters
* Acknowledgement of received data using the other side’s counter
* Re-ordering and re-sending if necessary

TCP recap

* Flow Control protects the recipient
* Recipient advertises its capacity
* Sender has to abide by it

e Congestion Control protects the network

* Transmission rate is gradually increased
* Throttled back if packet loss is detected
* Each side handles this independently

e Details differ from OS to OS

Image used under Pixabay License

S
Q
>
(O
—
AV
r)
O %
< 5
)
Q
=
Q
A
_I

Recap: IPv4 address exhaustion

* |IPv4 addresses are 32 bits long
 23%is about 4 billion

* Every Internet-enabled device needs an address to communicate
* There are a lot of devices

* The internet is (mostly) out of IPv4 addresses!

Port Address Translation

* “Hide” an entire private network behind a single public IP
* Rewrite IP packets at the boundary

* Also known as:
e “PAT”
* Network Address Translation (“NAT”)
* Network Address and Port Translation (“NAPT”)
* NAT overloading
* |P masquerading

www.iaik.tugraz.at

Port Address Translation

* “Hide” an entire private network behind a single public IP
* Rewrite IP packets at the boundary

Saved port mappings:

Internal External

|1;2.15:3.-:u.254 L__|?3.125.1;.31

From (IF): 1892.165.0.1
To (IP): 83.658.137.76
From port (UDE): 49152

To port {UDE) : 123 ‘hﬁdeffj/fr'

115

www.iaik.tugraz.at

Port Address Translation

* “Hide” an entire private network behind a single public IP
* Rewrite IP packets at the boundary

Saved port mappings:

Internal External
1892.165.0.1249152 | 83.63.137.76 via 48152

ES;EE h

192.168.0.254 L__|?3.125.1;.31|

From (IF): 73.125.1%5.81
To (IP): 83.658.137.76
From port (UDE): 49152
To port {UDE) : 123 ‘hﬁdeffj/fr'

116

www.iaik.tugraz.at

Port Address Translation

* “Hide” an entire private network behind a single public IP
* Rewrite IP packets at the boundary

Saved port mappings:

Internal External
1892.165.0.1249152 | 83.63.137.76 via 48152

(::} 152.148.0.1 192.153.0.254L 4?3.125.19.31

From (IFj: 1892.165.0.1
To (IP): 83.68.137.76
From port (UDE): 49152

To port {UDP) : 123

117

www.iaik.tugraz.at

Port Address Translation

* “Hide” an entire private network behind a single public IP

* Rewrite IP packets at the boundary
* Rewrite TCP/UDP ports to disambiguate

Saved port mappings:

Internal External
1892.165.0.1249152 | 83.63.137.76 via 48152
1892.165.0.2249152 ' 83.68.137.76 via 48153

D ”
(::} 152.148.0.1 1?2.153.0.254L_4T3.125.1§.31|

From (IF): 73.125.19.81
To (IP): 83.68.137.76
From port (UDE): 49153

To port {UDP) : 123

118

www.iaik.tugraz.at

Port Address Translation

* “Hide” an entire private network behind a single public IP

* Rewrite IP packets at the boundary
* Rewrite TCP/UDP ports to disambiguate

Saved port mappings:

Internal External
1892.165.0.1249152 | 83.63.137.76 via 48152
1892.165.0.2249152 ' 83.68.137.76 via 48153

1;2.15:3.::;.254 L__|?3.125.1;.31|

From (IPF): 83.68.137.74
To (IP): 73.125.19.81
From port (UDP): 123

To port (UDF) : 43152

119

www.iaik.tugraz.at

Port Address Translation

* “Hide” an entire private network behind a single public IP

* Rewrite IP packets at the boundary
* Rewrite TCP/UDP ports to disambiguate

Saved port mappings:

Internal External
1892.165.0.1249152 | 83.63.137.76 via 48152
1892.165.0.2249152 ' 83.68.137.76 via 48153

e
{::} 192.163.0.1 |192.155.0.254L_4T3.125.1§.31

From (IPF): 83.68.137.74
To (IBy: 152.165.0.1
From port (UDP): 123

To port (UDF) : 43152

120

www.iaik.tugraz.at

Port Address Translation

* “Hide” an entire private network behind a single public IP

* Rewrite IP packets at the boundary
* Rewrite TCP/UDP ports to disambiguate

Saved port mappings:

Internal External

182.165.0.1:49152 | §83.468.137.74 wvia 49152
182.165.0.2:49152 ' §83.468.137.74 wvia 49153

121

www.iaik.tugraz.at

Port Address Translation

* “Hide” an entire private network behind a single public IP

* Rewrite IP packets at the boundary
* Rewrite TCP/UDP ports to disambiguate

Saved port mappings:

Internal External
1892.165.0.1249152 | 83.63.137.76 via 48152
1892.165.0.2249152 ' 83.68.137.76 via 48153

122

Port Address Translation

* “Hide” an entire private network behind a single public IP

* Rewrite IP packets at the boundary
* Rewrite TCP/UDP ports to disambiguate

* Transparent if a client “inside” connects to a server “outside”
* The reverse will not work (by default)

* You can have PAT networks nested within PAT networks
* Entire ISPs can connect all their clients using one publicly-routable IP address!

* Your home ISP router almost definitely does this!
* Compare your ipconfig/ifconfig address with “what’s my ip” (google)

