
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2021/2022

Stefan Mangard, www.iaik.tugraz.at

Chapter 3 – State Machines

What About Storage?

• We have so far only considered functions

• We also want to store data and define sequences of computation

• So far, we have not talked about storage or about time

www.iaik.tugraz.at

2

Storage

www.iaik.tugraz.at

3

Storage

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Register

Clock

N bit
output

N bit data input

4

Storage

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Register

Clock

N bit
output

N bit data input

• The registers sets output = input when the
clock switches from low to high;

• In all other cases, the input is ignored; the
last “sampled” value is kept at the output

Clock

5

Naming Conventions

• Register: An n-bit storage sampling data on the rising clock edge

• Flip Flop: A 1-bit storage sampling data on the rising clock edge

6

Flip-Flop based on CMOS Gates

7

Combining

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Registers
Combinational

Circuit

Data Input Data Output

8

Example Counter

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Registers +1

Data Input Data Output

9

Example Counter

Registers +1

Data Input Data Output

Register 0 1 2 3 4 5 6 7 …..

Clock

10

Let’s Build This in Digital

• See examples con03 available at

https://extgit.iaik.tugraz.at/con/examples-2021.git

11

https://extgit.iaik.tugraz.at/con/examples-2021.git

The Clock Frequency

• Can we increase the clock frequency arbitrarily?

• The clock frequency is limited by the time the combinational
circuit needs to compute its outputs.

• The critical path is the path with the longest propagation delay in
the combinational circuit. It defines the maximum clock rate

12

Registers
Combinational

Circuit

Data Input Data Output

Temperature, Power Consumption

• The higher the temperature, the slower the transistors
become and the lower becomes the maximum clock rate

→ The lower the temperature,
the higher clock rates are possible

• Why does a CPU produce heat?

• Every time a logic gate switches, NMOS and PMOS transistors are
open at the same time → there is a short current.

• Upon a switch, there is also current flowing to charge and discharge
parasitics

→ The more transistors are switching, the more heat is produced

13

Clock Frequency Too High

What happens, if the clock frequency is too high?

• The circuit stores an intermediate state of the combinational
circuit in the registers.

• The intermediate state depends on the physical layout, the
temperature, fabrication details, … → hard to predict;
overclocking a processor too much typically leads to a crash

14

State Machines

www.iaik.tugraz.at

15

Finite State Machines (FSMs)

• FSMs are the “work horse” in digital systems.

• FSMs can be implemented with hardware.

• We look at “synchronous” FSMs only:
• The “clock signal” controls the action over time

• FSMs can be described with three main “views”:
• The functional view with the “state diagram”

• The timing view with the “timing diagram”

• The structural view with the “logic circuit diagram”

16

www.iaik.tugraz.at

Time flows continuously

time

17

www.iaik.tugraz.at

We cut time into slices

time

18

www.iaik.tugraz.at

Time slices are strictly ordered

i i+1 i+2i—1 i—2

time

19

www.iaik.tugraz.at

Clock signal

i i+1 i+2i—1 i—2

0

1

time

We use the clock signal (“clk”) in order to advance
time from slice to slice.

20

www.iaik.tugraz.at

Rising clock edge

i i+1 i+2i—1 i—2

0

1

time

With rising clock edges we define the transition
between neighboring time slices.
The negative clock edges have no importance.

21

www.iaik.tugraz.at

Clock period

i i+1 i+2i—1 i—2

0

1

clock
period

time

We call the time between two rising clock
edges also “clock period”.
Most often, clock periods have the same
length. But this is not necessarily the case. 22

www.iaik.tugraz.at

Synchronous
finite state machine
(= automaton)

FSM

clk

A synchronous FSM is clocked by a clock signal (“clk”).
In each clock period, the machine is in a defined (current) state.
With each rising edge of the clock signal, the machine advances
to a defined next state.

We are interested in “finite state machines” (FSMs).
FSMs have only a finite number of states.

23

www.iaik.tugraz.at

The sequence of
states can be
defined in a
state diagram.

24

www.iaik.tugraz.at

State diagram:

We denote the
states with circles
and give them
symbolic names,
e.g. A, B, and C.

A

B

C

25

www.iaik.tugraz.at

State diagram:

We define one of
the states as the
initial state.

A

B

C

26

www.iaik.tugraz.at

In the beginning…

0

1

time

Initially, i.e. shortly after switching on the FSM and before the
first rising edge of clock, there is the initial period. In this period,
the FSM is in the “initial state”.

initial period

A

27

www.iaik.tugraz.at

State diagram:

With arrows we
define the sequence
of states.

A

B

C

28

www.iaik.tugraz.at

The sequence of
states can also
be defined in a
state transition
table.

A

B

C

present
state

A
B
C

next
state

B
C
A

29

www.iaik.tugraz.at

Timing diagram

0

1

B

clk

A CC BAstate

time

Initially, the FSM is in the initial state A.

With every positive clock edge, the next state
becomes the current state.

An FSM has always a next state.
30

www.iaik.tugraz.at

In order to technically realize
(“implement”) a state diagram,

we start by giving
each state
a unique number.

A

B

C

www.iaik.tugraz.at

31

Popular
state-encoding schemes

• Binary encoding
• needs minimum amount of flip-flops.

• One-hot encoding
• Tends to have a simpler next-state logic.

32

A

B

C

www.iaik.tugraz.at

Binary encoding

00

01

10

state

A
B
C

number

00
01
10

33

www.iaik.tugraz.at

Binary encoding:
The state transition table
has also only binary numbers.

00

01

10

present
state

00
01
10

next
state

01
10
00

www.iaik.tugraz.at

34

We also enter the unused
combination “11”.
This state does not exist.
“x” stands for “Don’t care”.

00

01

10

present
state

00
01
10
11

next
state

01
10
00
xx

www.iaik.tugraz.at

35

We define names for
the two state bits, e.g.
s1, s0.

00

01

10

present
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

www.iaik.tugraz.at

36

Each state bit is stored in a flipflop

flipflop stored value

37

www.iaik.tugraz.at

In our example, we need 2 flip-flops
for storing the state bits.

s1

clk

next s1 D1 Q1

Flipflops which can store several bits
are also called “registers”.

s0next s0 Q0D0

38

www.iaik.tugraz.at

We use the state transition table as a
“lookup table”…

s1

clk

D1 Q1

s0Q0D0

present
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

next s1

next s0

39

www.iaik.tugraz.at

…and thus find out the next state

s1

clk

D1 Q1

s0Q0D0

present
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

40

www.iaik.tugraz.at

At each positive edge of clk, the next
state gets stored as the current state.

s1

clk

D1 Q1

s0Q0D0

present
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

41

www.iaik.tugraz.at

In order to get the initial state “00”, we use flipflops
with an “asynchronous reset input”. Shortly after
switching on the circuit, we apply “areset”.

s1

clk

D1 Q1

s0Q0D0

present
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

areset
42

www.iaik.tugraz.at

The state transition function in this example can be
derived from the truth table:
next s0 = (~s1) & (~s0)

s1

clk

D1 Q1

s0Q0D0

present
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x 0

areset
We set the don’t care to 0.

43

www.iaik.tugraz.at

The state transition function:
next s0 = (~s1) & (~s0)
next s1 = (~s1) & s0

s1

clk

D1 Q1

s0Q0D0

present
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
0 0

areset
We set this don’t care value also to 0.

44

www.iaik.tugraz.at

Structural diagram of the FSM:
State-transition function,
storage elements, and feedback of state.

next s0 = (~s1) & (~s0)

next s1 = (~s1) & s0

clk

D1 Q1

Q0D0

areset

next s0

next s1

s0

s1

45

www.iaik.tugraz.at

Essence so far

State diagram:

“next state” is a function of (present) “state”

State transitions:

the “next state” becomes (the present) “state”
on the rising edge of the clock

46

www.iaik.tugraz.at

The FSM modeled and simulated
with Digital

47

www.iaik.tugraz.at

For an example of this FSM see

fsm_moore_no_input

48

www.iaik.tugraz.at

Inputs

49

www.iaik.tugraz.at

FSMs can also have inputs influencing the
transition to the next state

A

B

Cin == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in”
influences the choice of
the state after B.

50

www.iaik.tugraz.at

FSMs can also have inputs influencing the
transition to the next state

A

B
C

in == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in”
influences the choice of
the state after B.

The following state can also
be the same as the current state.

in == 0

in == 1

51

www.iaik.tugraz.at

The state transition table

A

B
C

in == 0

in == 1

in == 0

in == 1

present in next
state state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

52

www.iaik.tugraz.at

Timing diagram. Example 1

0

1

B

clk

B CA CAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

53

www.iaik.tugraz.at

Timing diagram. Example 2

0

1

B

clk

C BC AAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

54

www.iaik.tugraz.at

Timing diagram. Example 3

0

1

B

clk

A BC BAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

55

www.iaik.tugraz.at

Binary state encoding: Instead of symbolic
state names we use numbers

00

01
10

in == 0

in == 1

in == 0

in == 1

56

present in next
state state

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0

www.iaik.tugraz.at

“11” does not exist: We use “Don’t Care” as
the following state

00

in == 0

in == 1

in == 0

in == 1

01
10

57

present in next
state state

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

www.iaik.tugraz.at

I have ordered the lines in the state
transition table from 0 to 7. This makes
it easier to “read” the table.

00

in == 0

in == 1

in == 0

in == 1

01
10

58

present in next
state state

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

0
1
2
3
4
5
6
7

www.iaik.tugraz.at

We call the state bits “s1” and “s0”

00

in == 0

in == 1

in == 0

in == 1

01
10

59

present in next
s1 s0 s1 s0

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

0
1
2
3
4
5
6
7

www.iaik.tugraz.at

next s0 = ((~s1) & (~s0) & (~in))
| ((~s1) & (~s0) & in)

00

in == 0

in == 1

in == 0

in == 1

01
10

60

present in next
s1 s0 s1 s0

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x 0
1 1 1 x 0

0
1
2
3
4
5
6
7

www.iaik.tugraz.at

next s1 = ((~s1) & s0 & in)
| (s1 & (~s0) & in)

00

in == 0

in == 1

in == 0

in == 1

01
10

61

present in next
s1 s0 s1 s0

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 0 0
1 1 1 0 0

0
1
2
3
4
5
6
7

www.iaik.tugraz.at

Structural diagram of the FSM

next s0 = ((~s1) & (~s0) & (~in))

| ((~s1) & (~s0) & in)

next s1 = ((~s1) & s0 & in)
| (s1 & (~s0) & in)

clk

D1 Q1

Q0D0

areset

next s0

next s1

s0

s1

in

62

www.iaik.tugraz.at

Implementation with Digital

63

www.iaik.tugraz.at

For an example of this FSM see

fsm_moore_no_output_function

64

www.iaik.tugraz.at

Outputs

65

www.iaik.tugraz.at

FSMs typically also have outputs

4

3
2

A

B C

in == 0

in == 1

output = f(state)

In this example we see
that the outputs are a function
of the state. We write the output
values into the circles.

We call such machines also
“Moore machines”:

in == 0

in == 1

66

www.iaik.tugraz.at

We define the outputs with the “output
function”

4

3
2

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state output
A 4
B 3
C 2

C

in == 0

in == 1

67

www.iaik.tugraz.at

Timing diagram. Example 3

0

1

B

clk

A AC BAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

out 4 3 2 4 3 4

68

www.iaik.tugraz.at

We define the outputs with binary values

100

011
010

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state output
A 100 (=4)
B 011 (=3)
C 010 (=2)

C

in == 0

in == 1

69

www.iaik.tugraz.at

We define the outputs with binary values

100

011
010

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state o2 o1 o0
A 1 0 0
B 0 1 1
C 0 1 0

C

in == 0

in == 1

70

www.iaik.tugraz.at

For an example of this FSM see

fsm_moore_with_output_function

71

www.iaik.tugraz.at

Binary state encoding: We define the outputs
with binary values

100

011
010

A

B

in == 0

in == 1

state o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

C

in == 0

in == 1

72

www.iaik.tugraz.at

We define the outputs with binary values

100

011
010

A

B

in == 0

in == 1

s1 s0 o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

o2 = ~s1 & ~s0

C

in == 0

in == 1

73

www.iaik.tugraz.at

We define the outputs with binary values

100

011
010

A

B

in == 0

in == 1

s1 s0 o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

C

in == 0

in == 1

74

www.iaik.tugraz.at

We define the outputs with binary values

100

011
010

A

B

in == 0

in == 1

s1 s0 o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

o0 = ~s1 & s0

C

in == 0

in == 1

75

www.iaik.tugraz.at

Structural diagram of the FSM

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
|(s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

76

www.iaik.tugraz.at

Implementation with Digital

77

www.iaik.tugraz.at

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

78

www.iaik.tugraz.at

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

a state transition is
caused by the
clock signal.

79

www.iaik.tugraz.at

Essence of Moore Machines

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

a state transition is
caused by the
clock signal.

With “areset” we can
initialize the ASM
(“initial state”).

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

80

www.iaik.tugraz.at

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

With the next-state function f
we compute the next state:
next state = f(state, input)

81

www.iaik.tugraz.at

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

With the output function we compute the
output values:

output = g(state)

82

www.iaik.tugraz.at

Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

83

www.iaik.tugraz.at

There exist 2 types of machines:
check out the
LITTLE but IMPORTANT difference

• Moore Machines
• next state = function of present state and input

• output = function of present state

• Mealy Machines
• next state = function of present state and input

• output = function of present state and input

85

www.iaik.tugraz.at

Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

86

www.iaik.tugraz.at

Essence of Mealy Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

output = g(state, input)

87

www.iaik.tugraz.at

An example for a Mealy Machine

A

B

in == 0
out = 3

in == 1
out = 1

out = 4 out = 2

We write the output values
next to the transition arrows,
since the output depends not
only on the state, but can also
depend on the input.

C

in == 0

in == 1
out = 0

88

www.iaik.tugraz.at

The state transitions are the same as in the previous
example with the Moore Machine

A

B

in == 0
out = 3

in == 1
out = 1

out = 4

present in next
state state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

C

in == 1
out = 0

out = 2
in == 0

89

www.iaik.tugraz.at

The output function

A

B

in == 0
out = 3

in == 1
out = 1

out = 4

The output function can be derived from the state diagram.
output = g(state, input)

state in output
A 0 4
A 1 4
B 0 3
B 1 1
C 0 2
C 1 0

out = 2
in == 0

in == 1

out = 0
C

90

www.iaik.tugraz.at

Timing diagram

0

1

B

clk

A AC BAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram. We see here also, how
the value of “in” immediately influences the value of “out”.

0

1

out 4 3 2 4 3 41 3 1 0

91

www.iaik.tugraz.at

Binary encoding: Re-writing the output table
with binary values.

A

B

in == 0
out = 3

in == 1
out = 1

out = 4

And completing the table with the unused bit combinations.

s1 s0 in o2 o1 o0
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 x x x
1 1 1 x x x

out = 2
in == 0

in == 1
out = 0

C

92

www.iaik.tugraz.at

We can derive the logic functions for o2, o1,
and o0

s1 s0 in o2 o1 o0
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 x x x
1 1 1 x x x

o2 = ~s1 & ~s0

93

www.iaik.tugraz.at

We can derive the logic functions for o2, o1,
and o0

s1 s0 in o2 o1 o0
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 x x x
1 1 1 x x x

o2 = ~s1 & ~s0

o1 = (~s1 & s0 & ~in)
| (s1 & ~s0 & ~in)

94

www.iaik.tugraz.at

We can derive the logic functions for o2, o1,
and o0

s1 s0 in o2 o1 o0
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 x x x
1 1 1 x x x

o2 = ~s1 & ~s0

o1 = (~s1 & s0 & ~in)
| (s1 & ~s0 & ~in)

o0 = ~s1 & s0

95

www.iaik.tugraz.at

The result

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0 & ~in)
| (s1 & ~s0 &

~in)

o0 = ~s1 & s0

o2

o1

o0

96

www.iaik.tugraz.at

Modeling with Digital

97

www.iaik.tugraz.at

For a SystemVerilog example of this FSM see

con03_mealy_fsm

98

www.iaik.tugraz.at

We can combine machines

• Combining Moore Machines causes no problem. We get another
Moore Machine.

• Combining a Moore Machine with a Mealy Machine causes also no
problem. We get a Moore Machine or a Mealy Machine.

• Combining two Mealy Machines can cause troubles: One needs to
avoid combinational loops!

99

www.iaik.tugraz.at

The combination of two Moore Machines creates
again a (more complex) Moore Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

100

www.iaik.tugraz.at

We can even connect More Machines in
a loop-like fashion

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

101

www.iaik.tugraz.at

The combination of a Moore Machine with a Mealy Machine
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

102

www.iaik.tugraz.at

The combination of a Moore Machine with a Mealy Machine
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

103

www.iaik.tugraz.at

The combination of two Mealy Machines is “dangerous”:
You need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

104

www.iaik.tugraz.at

The combination of two Mealy Machines is “dangerous”: You
need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

105

www.iaik.tugraz.at

Summary

• All digital logic can in principle be built with Moore Machines and
Mealy Machines.

• You always start by defining the function with a state diagram.

• If you choose values for the input signal(s), then you can derive the
timing diagram by using the state diagram.

• From a state diagram, you can always derive a circuit diagram.

106

www.iaik.tugraz.at

Algorithmic State Machines

107

www.iaik.tugraz.at

Algorithmic State Machines (ASMs)

• ASMs are a useful extension to finite state machines

• ASMs allow to specify a system consisting of a data path together
with its control logic

• All FSM state diagrams have an equivalent ASM diagram

108

www.iaik.tugraz.at

FSM state diagram → ASM diagrams

4

3
2

B

Cin == 0

in == 1

out = 4A

out = 3

out = 2

in

1

A

B

C

0

109

www.iaik.tugraz.at

Mealy Machines

A

B

C
in == 0
out = 3

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3

110

www.iaik.tugraz.at

Mealy Machines

A

B

C
in == 0
out = 3

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3

111

www.iaik.tugraz.at

Register-Transfer Statements

• Register-transfer statements define the change of a value stored in a
register.

• Values in registers can only change at the active (= rising) edge of clock.

• We denote “register-transfer statements” with a “left arrow” (“”)

• Example: “a x” means that the value in the register “a” gets the value
of “x” at the “next” active (= rising) edge of clock.

• We can specify register-transfer statement in an ASM diagram.

112

www.iaik.tugraz.at

ASM diagram with two register-transfer
statements

out = 4
X 0

out = 3

out = 2
X X + 1

in

1

A

B

C

0

The value stored in register X gets 0
at the state transition
from state A to state B.

The value in register X gets incremented
at the state transition following state C.

The value in register X does not change
upon leaving state B.

113

www.iaik.tugraz.at

Timing diagram

0

1

B

clk

A BC BAstate

in
0

1

out 4 3 2 4 3 3

X ? 0 0 1 0 0

114

www.iaik.tugraz.at

“=“ versus “”

• With the equal sign (“=“) we denote that the output of the FSM has a
certain value during a particular state.

• With the left-arrow (“”) we denote a register-transfer statement:
The register value left of the arrow changes to whatever is defined
right of the arrow upon the next active (= rising) edge of clock.

115

www.iaik.tugraz.at

Several register-transfer statements can
be specified within one state

out = 4
X 0
Y 0

out = 3
Y X

out = 2
X X + 1

in

1

A

B

C

0

The values stored in register X and
register Y become 0 at the state transition
from state A to state B.

The value in register X gets incremented
at the state transition following state C.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.

116

www.iaik.tugraz.at

Several register-transfer statements can
be specified within one state

out = 4
X 0
Y 0

out = 3
Y X

out = 2
X X + 1

Y X

in

1

A

B

C

0

The values stored in register X and
register Y become 0 at the state transition
from state A to state B.

The value in register X gets incremented
at the state transition following state C.
Register Y gets the “old” value from X; i.e
the value before X gets incremented.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.

117

www.iaik.tugraz.at

Separating Control and Data Path

118

www.iaik.tugraz.at

Register-Transfer Statements Define the Data Path

out = 4
X 0
Y 0

out = 3
Y X

out = 2
X X + 1

Y X

in

1

A

B

C

0

X 0
X X
X X+ 1

Y 0
Y X

Operations for register X:

Operations for register Y:

119

www.iaik.tugraz.at

These are the actions that our system is able to perform on
The data registers X and Y

Control Unit

• State machine generating
control signals for the data
path

www.iaik.tugraz.at

120

Data Path
• Contains all functional units and

registers related to data processing

• Receives control signals to perform
operations on the data.

• Provides status signals to the control-
related data to the control unit

“Piano Player” “Piano”

www.iaik.tugraz.at

121

Music

Data Path

implementing
the actions on

X, Y

Control

defines when
what action
should be
performed

Control Signals

provided by
data path to

perform actions
on X and Y

Register-Transfer Statements Define the Data Path

out = 4
X 0
Y 0

out = 3
Y X

out = 2
X X + 1

Y X

in

1

A

B

C

0

X 0
X X
X X+ 1

Y 0
Y X

Operations for register X:

Operations for register Y:

122

www.iaik.tugraz.at

These are the operations that our data path implements

Operations for register X

Case 0: X X
Case 1: X X+ 1
Case 2: X 0

We need to distinguish
between 3 cases.

123

www.iaik.tugraz.at

→ A one bit control signal is not enough. We need two control signals.

The neighborhood of register X

clrx incx action
0 0 X X
0 1 X X+ 1
1 0 X 0

We use binary notation
and name the two binary
select variables.

124

www.iaik.tugraz.at

The neighborhood of register X

clrx incx action
0 0 X X
0 1 X X+ 1
1 0 X 0

With Logisim we can
model the neighborhood of
Register and also simulate.

125

www.iaik.tugraz.at

The neighborhood of register Y

clry ldy action
0 0 Y Y
0 1 Y X
1 0 Y 0

In a similar way, we can
model the neighborhood
of Y.

126

www.iaik.tugraz.at

The datapath

We combine the two
neighborhoods.

Note that both neighborhoods
are Moore machines.

The Moore machine for X has 2
inputs: clrx and incx. Since we have
chosen an 8-bit register for X,
we have 256 possible states.
The output function is the identity
function.

The connection of the two is
again a Moore machine. Thus,
The datapath is a Moore machine.

127

www.iaik.tugraz.at

Register-transfer statements define the
data path

out = 4
X 0
Y 0

out = 3
Y X

out = 2
X X + 1

Y X

in

1

A

B

C

0

Datapath:

128

www.iaik.tugraz.at

The control logic needs to provide the
control signals

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

129

www.iaik.tugraz.at

Truth table of output logic of controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

state clrx incx clry ldy out

0 0 1 0 1 0 100
0 1 0 0 0 1 011
1 0 0 1 0 1 010

A 00
B 01
C 10

130

www.iaik.tugraz.at

Truth table of next-state logic of controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

state clrx incx clry ldy out

0 0 1 0 1 0 100
0 1 0 0 0 1 011
1 0 0 1 0 1 010

state in next_state
A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 A

131

www.iaik.tugraz.at

Truth table of next-state logic of controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

A 00
B 01
C 10

132

www.iaik.tugraz.at

s1 s0 clrx incx clry ldy out

0 0 1 0 1 0 100
0 1 0 0 0 1 011
1 0 0 1 0 1 010
1 1 x x x x xxx

s1 s0 in ns1 ns0
0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 0 0
1 1 0 x x
1 1 1 x x

From truth table to implementation

s1 s0 clrx incx clry ldy out

0 0 1 0 1 0 100
0 1 0 0 0 1 011
1 0 0 1 0 1 010
1 1 x x x x xxx

s1 s0 in ns1 ns0
0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 0 0
1 1 0 x x
1 1 1 x x

outl:

nsl:

133

www.iaik.tugraz.at

The controller and the data path

134

www.iaik.tugraz.at

SystemVerilog

(Watch the tutorials for the practicals for details)

www.iaik.tugraz.at

135

SystemVerilog coding style

• Suffix _o for module outputs, _i for module inputs

• Register variables with suffix _p for previous and _n for next value

• Array range with [MSB:LSB], like e.g. [31:0]

• Clocked processes use non-blocking (<=) others use blocking assignments (=)

• Clocked processes only update registers,
everything else has to be done in combinational blocks

• Filename corresponds to module name: module MyDesign in file mydesign.sv

• Module instantiation always with named assignments (.A(C))

• With significant implications beyond style:
• Always use default assignments (e.g. state_n = state_p)
• Always use default branches (default:) in case statements
→ If you do not assign the output of a combinational block for all input conditions, latches are created for data
storage!

Overview of Coding Guidelines

www.iaik.tugraz.at

138

Registers
Combinational

Circuit

Data Input Data Output

Always_comb

Use Blocking Assignments
a = b;

always_ff @(posedge clk_i or posedge reset_i)

Use Non-Blocking Assignments
a_p <= a_n;

_o
_i

_n _p

Essence of Moore Machines (Verilog)

next-
state
logic

state

clk

QD

areset

state_p

input

out-
put

logic

outputstate_n

139

www.iaik.tugraz.at

always_comb

Use Blocking Assignments
a = b;

always_ff @(posedge clk_i or posedge reset_i)

Use Non-Blocking Assignments
state_p <= state_n;

_o

_i

Always_comb

Use Blocking Assignments
a = b;

SystemVerilog Examples

• All FSMs of this lecture are available in SystemVerilog as well

www.iaik.tugraz.at

140

