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What About Storage? 

• We have so far only considered functions 

• We also want to store data and define sequences of computation

• So far, we have not talked about storage or about time
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Storage
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Storage

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Register

Clock

N bit
output

N bit data input
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Storage

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Register

Clock

N bit
output

N bit data input

• The registers sets output = input when the 
clock switches from low to high; 

• In all other cases, the input is ignored; the 
last “sampled” value is kept at the output 

Clock
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Naming Conventions

• Register: An n-bit storage sampling data on the rising clock edge

• Flip Flop: A 1-bit storage sampling data on the rising clock edge
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Flip-Flop based on CMOS Gates
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Combining 

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Registers
Combinational 

Circuit

Data Input Data Output
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Example Counter

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Registers +1

Data Input Data Output
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Example Counter

Registers +1

Data Input Data Output

Register     0       1         2       3       4         5        6       7   …..

Clock
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Let’s Build This in Digital

• See examples con03 available at

https://extgit.iaik.tugraz.at/con/examples-2021.git
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The Clock Frequency

• Can we increase the clock frequency arbitrarily? 

• The clock frequency is limited by the time the combinational 
circuit needs to compute its outputs.  

• The critical path is the path with the longest propagation delay in 
the combinational circuit. It defines the maximum clock rate

12

Registers
Combinational 

Circuit

Data Input Data Output



Temperature, Power Consumption

• The higher the temperature, the slower the transistors 
become and the lower becomes the maximum clock rate  

→ The lower the temperature, 
the higher clock rates are possible

• Why does a CPU produce heat?

• Every time a logic gate switches, NMOS and PMOS transistors are 
open at the same time → there is a short current.

• Upon a switch, there is also current flowing to charge and discharge 
parasitics

→ The more  transistors are switching, the more heat is produced
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Clock Frequency Too High

What happens, if the clock frequency is too high?

• The circuit stores an intermediate state of the combinational 
circuit in the registers. 

• The intermediate state depends on the physical layout, the 
temperature, fabrication details, … → hard to predict; 
overclocking a processor too much typically leads to a crash
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State Machines
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Finite State Machines (FSMs)

• FSMs are the “work horse” in digital systems.

• FSMs can be implemented with hardware.

• We look at “synchronous” FSMs only:
• The “clock signal” controls the action over time

• FSMs can be described with three main “views”:
• The functional view with the “state diagram”

• The timing view with the “timing diagram”

• The structural view with the “logic circuit diagram”

16
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Time flows continuously

time

17
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We cut time into slices

time

18

www.iaik.tugraz.at



Time slices are strictly ordered

i i+1 i+2i—1 i—2  

time

19
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Clock signal

i i+1 i+2i—1 i—2  

0

1

time

We use the clock signal (“clk”) in order to advance
time from slice to slice. 

20
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Rising clock edge

i i+1 i+2i—1 i—2  

0

1

time

With rising clock edges we define the transition 
between neighboring time slices.
The negative clock edges have no importance.

21
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Clock period

i i+1 i+2i—1 i—2  

0

1

clock
period 

time

We call the time between two rising clock 
edges also “clock period”.
Most often, clock periods have the same 
length. But this is not necessarily the case. 22
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Synchronous 
finite state machine 
(= automaton)

FSM

clk 

A synchronous FSM is clocked by a clock signal (“clk”). 
In each clock period, the machine is in a defined (current) state.
With each rising edge of the clock signal, the machine advances 
to a defined next state.

We are interested in “finite state machines” (FSMs). 
FSMs have only a finite number of states. 

23
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The sequence of
states can be
defined in a 
state diagram.

24
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State diagram:

We denote the
states with circles
and give them 
symbolic names,
e.g. A, B, and C.

A

B

C

25
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State diagram:

We define one of 
the states as the
initial state.

A

B

C

26
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In the beginning…

0

1

time

Initially, i.e. shortly after switching on the FSM and before the 
first rising edge of clock, there is the initial period. In this period,
the FSM is in the “initial state”.  

initial period 

A

27
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State diagram:

With arrows we
define the sequence
of states.

A

B

C

28
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The sequence of
states can also 
be defined in a 
state transition
table.

A

B

C

present
state

A
B
C

next 
state

B
C
A

29
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Timing diagram

0

1

B

clk

A CC BAstate

time

Initially, the FSM is in the initial state A.

With every positive clock edge, the next state
becomes the current state.

An FSM has always a next state.
30
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In order to technically realize 
(“implement”) a state diagram, 

we start by giving 
each state 
a unique number. 

A 

B

C

www.iaik.tugraz.at
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Popular 
state-encoding schemes

• Binary encoding
• needs minimum amount of flip-flops.

• One-hot encoding
• Tends to have a simpler next-state logic.

32

A  

B

C
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Binary encoding

00

01

10

state

A
B
C

number

00
01
10

33
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Binary encoding:
The state transition table
has also only binary numbers.

00

01

10

present
state

00
01
10

next 
state

01
10
00

www.iaik.tugraz.at
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We also enter the unused 
combination “11”. 
This state does not exist. 
“x” stands for “Don’t care”.

00

01

10

present
state

00
01
10
11

next 
state

01
10
00
xx

www.iaik.tugraz.at
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We define names for
the two state bits, e.g. 
s1, s0.

00

01

10

present
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x

www.iaik.tugraz.at
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Each state bit is stored in a flipflop

flipflop stored value

37
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In our example, we need 2 flip-flops 
for storing the state bits.

s1

clk

next s1 D1 Q1

Flipflops which can store several bits 
are also called “registers”.

s0next s0 Q0D0

38
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We use the state transition table as a 
“lookup table”…

s1

clk

D1 Q1

s0Q0D0

present 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x

next s1

next s0

39
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…and thus find out the next state

s1

clk

D1 Q1

s0Q0D0

present 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x

40
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At each positive edge of clk, the next 
state gets stored as the current state.

s1

clk

D1 Q1

s0Q0D0

present
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x

41
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In order to get the initial state “00”, we use flipflops
with an “asynchronous reset input”. Shortly after 
switching on the circuit, we apply “areset”. 

s1

clk

D1 Q1

s0Q0D0

present
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x

areset
42
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The state transition function in this example can be 
derived from the truth table:
next s0 = (~s1) & (~s0) 

s1

clk

D1 Q1

s0Q0D0

present
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   0

areset
We set the don’t care to 0.

43
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The state transition function:
next s0 = (~s1) & (~s0)
next s1  =  (~s1) & s0 

s1

clk

D1 Q1

s0Q0D0

present
s1   s0

0     0
0     1
1     0
1     1

next 
s1  s0

0 1
1 0
0 0
0 0

areset
We set this don’t care value also to 0.

44
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Structural diagram of the FSM:
State-transition function, 
storage elements, and feedback of state.

next s0 = (~s1) & (~s0)

next s1 =  (~s1) &     s0   

clk

D1 Q1

Q0D0

areset

next s0

next s1

s0

s1

45
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Essence so far

State diagram:

“next state” is a function of (present) “state”

State transitions:

the “next state” becomes (the present) “state” 
on the rising edge of the clock

46
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The FSM modeled and simulated 
with Digital

47

www.iaik.tugraz.at



For an example of this FSM see 

fsm_moore_no_input

48
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Inputs

49
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FSMs can also have inputs influencing the 
transition to the next state

A

B

Cin == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in” 
influences the choice of
the state after B.

50
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FSMs can also have inputs influencing the 
transition to the next state

A

B
C

in == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in” 
influences the choice of
the state after B.

The following state can also
be the same as the current state.

in == 0

in == 1

51
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The state transition table

A

B
C

in == 0

in == 1

in == 0

in == 1

present    in       next
state                   state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

52

www.iaik.tugraz.at



Timing diagram. Example 1

0

1

B

clk

B CA CAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

53
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Timing diagram. Example 2

0

1

B

clk

C BC AAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

54

www.iaik.tugraz.at



Timing diagram. Example 3

0

1

B

clk

A BC BAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

55
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Binary state encoding: Instead of symbolic 
state names we use numbers

00

01
10

in == 0

in == 1

in == 0

in == 1

56

present      in        next
state                      state

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
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“11” does not exist: We use “Don’t Care” as 
the following state

00

in == 0

in == 1

in == 0

in == 1

01
10

57

present      in        next
state                      state

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x
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I have ordered the lines in the state 
transition table from 0 to 7. This makes 
it easier to “read” the table.

00

in == 0

in == 1

in == 0

in == 1

01
10

58

present      in        next
state                      state

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

0
1
2
3
4
5
6
7
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We call the state bits “s1” and “s0”

00

in == 0

in == 1

in == 0

in == 1

01
10

59

present in          next
s1  s0                      s1   s0

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

0
1
2
3
4
5
6
7
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next s0 =    ( (~s1) & (~s0) & (~in))
| ( (~s1) & (~s0) &     in )

00

in == 0

in == 1

in == 0

in == 1

01
10

60

present      in          next
s1  s0                      s1   s0

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x 0
1 1 1 x 0

0
1
2
3
4
5
6
7
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next s1 =   ((~s1) &    s0   & in)
| ( s1  & (~s0) & in)

00

in == 0

in == 1

in == 0

in == 1

01
10

61

present      in          next
s1  s0                      s1   s0

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 0 0
1 1 1 0 0

0
1
2
3
4
5
6
7
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Structural diagram of the FSM 

next s0 =    ( (~s1) & (~s0) & (~in)) 

| ( (~s1) & (~s0) &     in )

next s1 =   ((~s1) &    s0   & in) 
| ( s1  & (~s0) & in) 

clk

D1 Q1

Q0D0

areset

next s0

next s1

s0

s1

in

62
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Implementation with Digital
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For an example of this FSM see 

fsm_moore_no_output_function

64
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Outputs

65
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FSMs typically also have outputs

4

3
2

A

B C

in == 0

in == 1

output = f(state)

In this example we see
that the outputs are a function
of the state. We write the output
values into the circles. 

We call such machines also
“Moore machines”:

in == 0

in == 1

66
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We define the outputs with the “output 
function”

4

3
2

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state    output
A 4
B 3
C 2

C

in == 0

in == 1

67
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Timing diagram. Example 3

0

1

B

clk

A AC BAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

out 4 3 2 4 3 4

68
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We define the outputs with binary values

100

011
010

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state    output
A 100       (=4)
B 011       (=3)
C 010       (=2)

C

in == 0

in == 1

69
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We define the outputs with binary values

100

011
010

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state    o2 o1 o0 
A 1   0    0       
B 0   1    1      
C 0   1    0      

C

in == 0

in == 1

70
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For an example of this FSM see 

fsm_moore_with_output_function
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Binary state encoding: We define the outputs 
with binary values

100

011
010

A

B

in == 0

in == 1

state    o2 o1 o0 
0   0      1   0    0       
0   1 0   1    1      
1   0 0   1    0      

C

in == 0

in == 1

72
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We define the outputs with binary values

100

011
010

A

B

in == 0

in == 1

s1  s0    o2 o1 o0 
0   0      1   0    0       
0   1 0   1    1      
1   0 0   1    0      

o2 = ~s1 & ~s0  

C

in == 0

in == 1

73
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We define the outputs with binary values

100

011
010

A

B

in == 0

in == 1

s1  s0    o2 o1 o0 
0   0      1   0    0       
0   1 0   1 1      
1   0 0   1 0      

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

C

in == 0

in == 1

74
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We define the outputs with binary values

100

011
010

A

B

in == 0

in == 1

s1  s0    o2 o1 o0
0   0      1   0    0       
0   1 0   1    1
1   0 0   1    0      

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

o0 = ~s1 & s0

C

in == 0

in == 1

75
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Structural diagram of the FSM 

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 

& ~s0 &   in)

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &   s0)
|( s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

76
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Implementation with Digital

77
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Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 

& ~s0 &   in)

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &  s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

the state is 
stored 
in a register

78
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Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 

& ~s0 &  in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &  s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

the state is 
stored 
in a register

a state transition is 
caused by the 
clock signal.

79
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Essence of Moore Machines

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &  s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

the state is 
stored 
in a register

a state transition is 
caused by the 
clock signal.

With “areset” we can 
initialize the ASM
(“initial state”). 

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 

& ~s0 &  in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

80
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Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 

& ~s0 &  in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &  s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

With the next-state function f 
we compute the next state:
next state = f(state, input)

81
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Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 

& ~s0 &  in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &  s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

With the output function we compute the
output values:

output = g(state)

82
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Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

83
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There exist 2 types of machines: 
check out the 
LITTLE but IMPORTANT difference

• Moore Machines
• next state = function of present state and input

• output = function of present state

• Mealy Machines
• next state = function of present state and input

• output = function of present state and input 

85
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Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

86
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Essence of Mealy Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

output = g(state, input)

87
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An example for a Mealy Machine

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4 out = 2

We write the output values
next to the transition arrows,
since the output depends not
only on the state, but can also 
depend on the input. 

C

in == 0

in == 1
out = 0

88
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The state transitions are the same as in the previous 
example with the Moore Machine

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4

present     in       next
state                    state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

C

in == 1
out = 0

out = 2
in == 0

89
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The output function

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4

The output function can be derived from the state diagram.
output = g(state, input)

state   in    output
A       0 4
A       1            4
B 0            3
B       1            1
C 0            2
C       1            0

out = 2
in == 0

in == 1

out = 0
C

90
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Timing diagram

0

1

B

clk

A AC BAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram. We see here also, how
the value of “in” immediately influences the value of “out”.

0

1

out 4 3 2 4 3 41 3 1 0
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Binary encoding: Re-writing the output table 
with binary values. 

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4

And completing the table with the unused bit combinations.

s1  s0   in   o2  o1  o0
0    0    0    1 0     0
0    0    1    1     0     0
0    1 0    0     1     1
0    1    1    0     0     1
1    0    0    0     1     0
1    0    1    0     0     0
1    1    0    x     x      x
1    1    1    x     x      x

out = 2
in == 0

in == 1
out = 0

C
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We can derive the logic functions for o2, o1, 
and o0

s1  s0   in   o2  o1  o0
0    0    0    1 0     0
0    0    1    1 0     0
0    1 0    0     1     1
0    1    1    0     0     1
1    0    0    0     1     0
1    0    1    0     0     0
1    1    0    x     x      x
1    1    1    x     x      x

o2 = ~s1 & ~s0 
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We can derive the logic functions for o2, o1, 
and o0

s1  s0   in   o2  o1  o0
0    0    0    1 0     0
0    0    1    1 0     0
0    1 0    0     1 1
0    1    1    0     0     1
1    0    0    0     1 0
1    0    1    0     0     0
1    1    0    x     x      x
1    1    1    x     x      x

o2 = ~s1 & ~s0

o1 = (~s1 &  s0 & ~in) 
| (s1 & ~s0 & ~in) 
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We can derive the logic functions for o2, o1, 
and o0

s1  s0   in   o2  o1  o0
0    0    0    1 0     0
0    0    1    1 0     0
0    1 0    0     1 1
0    1    1    0     0     1
1    0    0    0     1 0
1    0    1    0     0 0
1    1    0    x     x      x
1    1    1    x     x      x

o2 = ~s1 & ~s0

o1 = (~s1 &  s0 & ~in) 
| (s1 & ~s0 & ~in) 

o0 = ~s1 & s0
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The result

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 

& ~s0 &  in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &  s0 & ~in) 
| (s1 & ~s0 & 

~in)

o0 = ~s1 & s0

o2

o1

o0

96

www.iaik.tugraz.at



Modeling with Digital
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For a SystemVerilog example of this FSM see 

con03_mealy_fsm
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We can combine machines

• Combining Moore Machines causes no problem. We get another 
Moore Machine.

• Combining a Moore Machine with a Mealy Machine causes also no 
problem. We get a Moore Machine or a Mealy Machine.

• Combining two Mealy Machines can cause troubles: One needs to 
avoid combinational loops!

99

www.iaik.tugraz.at



The combination of two Moore Machines creates 
again a (more complex) Moore Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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We can even connect More Machines in
a loop-like fashion

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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The combination of a Moore Machine with a Mealy Machine 
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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The combination of a Moore Machine with a Mealy Machine 
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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The combination of two Mealy Machines is “dangerous”: 
You need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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The combination of two Mealy Machines is “dangerous”: You 
need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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Summary

• All digital logic can in principle be built with Moore Machines and 
Mealy Machines.

• You always start by defining the function with a state diagram.

• If you choose values for the input signal(s), then you can derive the 
timing diagram by using the state diagram. 

• From a state diagram, you can always derive a circuit diagram.
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Algorithmic State Machines
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Algorithmic State Machines (ASMs)

• ASMs are a useful extension to finite state machines

• ASMs allow to specify a system consisting of a data path together 
with its control logic

• All FSM state diagrams have an equivalent ASM diagram
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FSM state diagram → ASM diagrams

4

3
2

B

Cin == 0

in == 1

out = 4A

out = 3

out = 2

in

1

A

B

C

0
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Mealy Machines

A

B

C
in == 0
out = 3 

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3
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Mealy Machines

A

B

C
in == 0
out = 3 

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3
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Register-Transfer Statements

• Register-transfer statements define the change of a value stored in a 
register.

• Values in registers can only change at the active (= rising) edge of clock.

• We denote “register-transfer statements” with a “left arrow” (“”)

• Example:   “a  x” means that the value in the register “a” gets the value 
of “x” at the “next” active (= rising) edge of clock.

• We can specify register-transfer statement in an ASM diagram.
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ASM diagram with two register-transfer 
statements

out = 4
X  0

out = 3

out = 2
X  X + 1

in

1

A

B

C

0

The value stored in register X gets 0 
at the state transition 
from state A to state B.

The value in register X gets incremented 
at the state transition following state C.

The value in register X does not change
upon leaving state B.
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Timing diagram

0

1

B

clk

A BC BAstate

in
0

1

out 4 3 2 4 3 3

X ? 0 0 1 0 0
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“=“ versus “”

• With the equal sign (“=“) we denote that the output of the FSM has a 
certain value during a particular state.

• With the left-arrow (“”) we denote a register-transfer statement: 
The register value left of the arrow changes to whatever is defined 
right of the arrow upon the next active (= rising) edge of clock.
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Several register-transfer statements can 
be specified within one state

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

in

1

A

B

C

0

The values stored in register X and 
register Y become 0 at the state transition 
from state A to state B.

The value in register X gets incremented 
at the state transition following state C.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.

116

www.iaik.tugraz.at



Several register-transfer statements can 
be specified within one state

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

The values stored in register X and 
register Y become 0 at the state transition 
from state A to state B.

The value in register X gets incremented 
at the state transition following state C.
Register Y gets the “old” value from X; i.e
the value before X gets incremented.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.
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Separating Control and Data Path
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Register-Transfer Statements Define the Data Path

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

X  0
X  X
X  X+ 1

Y  0
Y  X

Operations for register X:

Operations for register Y:
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These are the actions that our system is able to perform on
The data registers X and Y



Control Unit

• State machine generating 
control signals for the data 
path

www.iaik.tugraz.at
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Data Path
• Contains all functional units and 

registers related to data processing

• Receives control signals to perform 
operations on the data.

• Provides status signals to the control-
related data to the control unit

“Piano Player” “Piano”
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Music

Data Path

implementing 
the actions on 

X, Y

Control

defines when 
what action 
should be 
performed

Control Signals 

provided by 
data path to 

perform actions 
on X and Y



Register-Transfer Statements Define the Data Path

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

X  0
X  X
X  X+ 1

Y  0
Y  X

Operations for register X:

Operations for register Y:

122

www.iaik.tugraz.at

These are the operations that our data path implements



Operations for register X

Case 0: X  X
Case 1: X  X+ 1
Case 2: X  0

We need to distinguish
between 3 cases.
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→ A one bit control signal is not enough. We need two control signals.



The neighborhood of register X

clrx incx action
0 0 X  X
0  1 X  X+ 1
1  0 X  0

We use binary notation
and name the two binary
select variables.

124

www.iaik.tugraz.at



The neighborhood of register X

clrx incx action
0 0 X  X
0  1 X  X+ 1
1  0 X  0

With Logisim we can
model the neighborhood of 
Register and also simulate.
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The neighborhood of register Y

clry ldy action
0 0 Y  Y
0  1 Y  X
1  0 Y 0

In a similar way, we can
model the neighborhood
of Y. 
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The datapath

We combine the two
neighborhoods.

Note that both neighborhoods
are Moore machines.

The Moore machine for X has 2
inputs: clrx and incx. Since we have
chosen an 8-bit register for X,
we have 256 possible states.
The output function is the identity
function.  

The connection of the two is
again a Moore machine. Thus,
The datapath is a Moore machine.

127

www.iaik.tugraz.at



Register-transfer statements define the 
data path

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

Datapath:

128

www.iaik.tugraz.at



The control logic needs to provide the 
control signals

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0
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Truth table of output logic of controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

state      clrx  incx  clry    ldy     out

0  0 1     0 1     0 100
0  1 0     0 0     1 011
1  0 0     1 0     1 010 

A   00
B   01
C   10 
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Truth table of next-state logic of controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

state      clrx  incx  clry    ldy     out

0  0 1    0 1      0 100
0  1 0     0 0      1 011
1  0 0     1 0      1 010 

state      in          next_state
A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 A
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Truth table of next-state logic of controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

A   00
B   01
C   10 
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s1 s0      clrx  incx  clry    ldy     out

0  0 1     0 1      0 100
0  1 0     0 0      1 011
1  0 0     1 0      1 010
1  1 x      x x       x xxx 

s1   s0      in         ns1   ns0
0     0 0          0     1
0     0 1          0     1
0     1 0          0     0
0     1 1          1     0
1     0 0          0     0
1     0 1          0     0
1     1       0          x     x
1     1       1          x     x



From truth table to implementation

s1 s0      clrx  incx  clry    ldy     out

0  0 1     0 1      0 100
0  1 0     0 0      1 011
1  0 0     1 0      1 010
1  1 x      x x       x xxx 

s1   s0      in         ns1   ns0
0     0 0          0     1
0     0 1          0     1
0     1 0          0     0
0     1 1          1     0
1     0 0          0     0
1     0 1          0     0
1     1       0          x     x
1     1       1          x     x

outl:

nsl:
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The controller and the data path
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SystemVerilog

(Watch the tutorials for the practicals for details)
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SystemVerilog coding style

• Suffix _o for module outputs, _i for module inputs

• Register variables with suffix _p for previous and _n for next value

• Array range with [MSB:LSB], like e.g. [31:0]

• Clocked processes use non-blocking (<=) others use blocking assignments (=)

• Clocked processes only update registers,
everything else has to be done in combinational blocks

• Filename corresponds to module name: module MyDesign in file mydesign.sv

• Module instantiation always with named assignments (.A(C))

• With significant implications beyond style:
• Always use default assignments (e.g. state_n = state_p)
• Always use default branches (default:) in case statements
→ If you do not assign the output of a combinational block for all input conditions, latches are created for data 
storage!



Overview of Coding Guidelines
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Registers
Combinational 

Circuit

Data Input Data Output

Always_comb

Use Blocking Assignments
a = b;

always_ff @(posedge clk_i or posedge reset_i)

Use Non-Blocking Assignments
a_p <= a_n;

_o
_i

_n _p



Essence of Moore Machines (Verilog)

next-
state
logic

state

clk

QD

areset

state_p

input

out-
put

logic

outputstate_n
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always_comb

Use Blocking Assignments
a = b;

always_ff @(posedge clk_i or posedge reset_i)

Use Non-Blocking Assignments
state_p <= state_n;

_o

_i

Always_comb

Use Blocking Assignments
a = b;



SystemVerilog Examples

• All FSMs of this lecture are available in SystemVerilog as well
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