
Model Checking Practicals:

Assignment 2 - Bounded Model Checking

April 7, 2022

1 Assignment Summary

The goal of the second exercise in the model checking practicals is to implement
the bounded model checking (BMC) method. The implementation is sup-
posed to closely follow the Model Checking book. Your implementation must
extend the provided framework to implement BMC using incremental solving
with Z3. All work is done in the same repository as the last exercise, only in
the hwmc directory instead of warmup. The preliminary submission deadline is
Friday 6th of May end-of-day. We provide question hours every Wednesday
from 10:00 to 11:00 on Discord where you can ask us implementation related
questions. You will get the feedback and assignment points by Monday 16th
of May.

The rest of the document provides more details.

2 Setup and Submission

You are working in the same repository as for the last exercise, and all of the
setup is the same. Additionally, before you begin implementing this exercise,
you have to pull from the upstream and update the repository so that you get
the framework. You do this with:

git pull upstream master

git push origin master

After implementing everything, you submit the solution by running:

git tag "bmc"

git push origin "bmc"

In case you need to fix something after tagging the submission commit, you
just update the tag to the new commit.

1

3 Input Format

The framework implementation already includes a lot of things needed for a
hardware model checker. Since the benchmarks used at the official competition
use the BTOR2 format [NPWB], we include parts of a BTOR2 parser that
extracts a circuit from the input file. As a bit-vector format, BTOR2 has its
own type system, where each file declares its sorts as bit-vectors of a certain
length. Furthermore, the format specifies state variables which are actually just
registers in the hardware design, that include an init for reset values, and next
for flip-flop inputs triggered with a clock. Similarly, each input corresponds
to one of the signals provided from outside the circuit, and might change in
each clock cycle. Assumptions about these inputs are defined using constraint
properties, which model the environments interaction with the system. Other
than that, all the wires are represented as gate outputs. In contrast to real
RTL, BTOR2 includes a few special declarations related to model checking.
Out of those, the only interesting one for this exercise is the bad property,
which defines one condition which makes a state bad. There can be multiple
bad state conditions, and if any of them is satisfied, the state is undesirable.
Essentially, these are the properties you want to reach when executing your
BMC routine.

4 Bounded Model Checking

This section briefly recounts the formalization of BMC you should use as a
guide for the actual implementation tasks. BMC is an algorithm that unrolls
the hardware up to a certain depth and checks whether any bad states can be
reached. As such BMC maintains a trace of frames, where each frame corre-
sponds to the state of a circuit in a given clock cycle. Each frame consists of
several components. The frame has a set of variables Vi for registers and in-
puts, and a set of formulas Fi for the intermediate computations of wires. For
the transitions between the (i− 1)-th and i-th frame, BMC constructs a set of
equalities Ti := {v = w} where v ∈ Vi and w ∈ Vi−1 ∪Fi−1 ∪L and L is a set of
constants. Using this notation, we can think of the initial state V0 as being con-
strained with equalities T0 where V−1 ∪ F−1 = ∅, i.e., the initial state variables
v ∈ Vi are set to equal some constants through equalities T0. Additionally, the
set of constraints Ci makes sure that the solver respects the assumptions about
the circuit’s environment.

In each BMC step, the implementation tries to find a sequence of states
such that the last state in the sequence satisfies a bad state property. If we call
Bi the set of bad state properties in each frame, then the solver tries to solve
Equation 1. (∨

b∈Bk

b

)
∧

k∧
i=0

((∧
t∈Ti

t

)
∧

(∧
c∈Ci

c

))
(1)

2

Because the BMC algorithm is iterative, and would have already proven that
none of the bad state properties b ∈ Bi are reachable in i < k steps, we can add
them to the problem we are trying to solve, in order to speed up the solving
process, as shown in Equation 2.(∨

b∈Bk

b

)
∧

k∧
i=0

((∧
t∈Ti

t

)
∧

(∧
c∈Ci

c

))
∧

k−1∧
i=0

∧
b∈Bi

¬b (2)

If any such states are found, BMC terminates and prints the counterexample
as a simulation trace for the given circuit. In case none are found, BMC expands
the trace by one frame and tries again. Note here, that the bad state property
is only checked in the last frame, as the previous iteration show that no bad
state is reachable in any of the previous frames.

5 Task 1: State Forwarding [20 Points]

In the framework we provide to you, the state of a circuit is stored as a map
between BTOR indices and Z3 expressions in the ExprMap data structure. Simi-
larly, the datatypes from the BTOR file are also stored in a similar map SortMap.

typedef std::map<int64_t, const z3::sort> SortMap;

typedef std::map<int64_t, const z3::expr> ExprMap;

According to the notation from before, you would store all variables v ∈ Vi

and expressions over the variables fi ∈ Fi inside such a ExprMap data structure.
The trace is then just a vector containing such frames.

Forwarding is then just creating a new full frame, based on the previous
frame. In the framework, you have to implement the following functions:

void forward_wires(Btor2Parser* parser, ExprMap& curr_state);

void forward_state(Btor2Parser* parser, ExprMap& curr_state,

const ExprMap& prev_state, z3::expr_vector& eqs, uint32_t step);

static void forward_cons(Btor2Parser* parser, ExprMap& curr_state,

z3::expr_vector& cons);

void forward(Btor2Parser* parser, const Options& opt, uint32_t step);

The function forward is main forwarding function that is called later by your
BMC algorithm implementation to create a new frame. Internally it calls the
other forwarding functions. It creates the state variables and inputs in the new
frame with forward state and constrains them with the transition equalieies
(Ti from before). The transition equalities are determined based on the declared
next statements from the BTOR file. Afterwards, forward calls forward wires

to determine the Z3 expressions representing all the wire values and storing
them in the current frame. Finally, forward calls forward cons to generate the
environmental constraints and add them to the solver. After forward finishes,
the current frame is completely generated and constrained properly, so that the
caller can perform checks. Importantly, you should implement these functions
as generally as possible, so that you can also use them with K-induction in the
next exercise.

3

6 Task 2: Implement BMC [7+3 Points]

After finishing forwarding functions, you are ready to implement the actual
BMC routine. The model checker keeps everything required for BMC ready,
meaning that at the point at which the check bmc function is called, you just
need to add the bad properties into the solver and perform the actual sat solver
call. In other words, you can assume that the solver already contains

k∧
i=0

((∧
t∈Ti

t

)
∧

(∧
c∈Ci

c

))
. (3)

Here, you should break down the
∨

b∈Bk
b expression into multiple solver

calls. That is, iterate through all bad state properties, add the current one into
the solver, and check for satisfiability. If the solver says SAT, you are done and
return the index of the bad state property. Otherwise, you undo the addition
of the bad property into the solver and check the next one. In case there are
no bad state properties that are satisfiable, return −1 from check bmc. With
this implementation, you have essentially implemented the checking as done in
Equation 1. For the second part of this task, think about and implement the
second optimized Equation 2 for the solver call. Keep in mind that you are
only doing this optionally in the solver option -prevopt is provided through
the command line.

7 Task 3: Testcases [5× 2 Points] + [6 Bonus]

For the last task, you are supposed to implement small hardware modules in
BTOR and use them to test your implementation. In particular, you should cre-
ate small modules with Verilog and compile them into BTOR with the synthesis
tool Yosys. These testcases are supposed to show different aspects of your im-
plementation. For each of the following specifications, you should have at least
one testcase that produces the desired behavior of your BMC implementation:

� A module with a state machine of at least six unique states, one of which
is associated with a bad property

� A module that has at least two environmental constraints and two bad
properties that are violated at different BMC depths

� A module with at least 40 state bits, that reaches a bad state at k=5

� A module that is actually correct with respect to at least one bad
proeprty, and BMC reports no violations in the first 20 cycles

You can implement up to three additional testcases and get bonus points for
those, as long as they show some interesting behavior. For each of the testcases,
you should also create a protocol-testcasebane.md file that describes what the
testcase does, what the expected output is and in case it is satisfiable at some
bound, give the output of your implementation as well.

4

References

[NPWB] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2
, btormc and boolector 3.0. In Hana Chockler and Georg Weis-
senbacher, editors, Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Confer-
ence, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part
I.

5

	Assignment Summary
	Setup and Submission
	Input Format
	Bounded Model Checking
	Task 1: State Forwarding [20 Points]
	Task 2: Implement BMC [7+3 Points]
	Task 3: Testcases [5 2 Points] + [6 Bonus]

