
Probabilistic Model Checking
Stefan Pranger

02. 06. 2022

1

Communication Protocol

So far: Reachability Probabilities and how to compute them.

Today: More expressive properties!

2

Longterm Behaviour of MCs
"Fairness" from Probabilistic Behaviour
Every follow-up state of will be visited infinitely often, given is visited infinitely often.u t ∈ S t

3

Longterm Behaviour of MCs
"Fairness" from Probabilistic Behaviour
Every follow-up state of will be visited infinitely often, given is visited infinitely often.

Bottom Strongly Connected Components
We have heard about SCCs already

Recap: A strongly connected component is set of states, such that there is a path between any two states in
the component.

A bottom SCC is an SCC such that no state outside the SCC is reachable.

This will come in quite handy later today!

u t ∈ S t

4

Longterm Behaviour of MCs
From the two discussed properties we can deduce the following:

In words: Almost surely a BSCC will be reached and all of its states will be visited infinitely often.

Pr{π ∈ Paths(s) ∣ inf(π) ∈ BSCC(M)} = 1

5

Probabilistic Computation Tree Logic
Probabilistic Computation Tree Logic [PCTL] is the probabilistic extension of CTL.

Boolean state representation.

 are replaced by , where
The interpretation for each state :

∀ and ∃ (φ)PJ J ⊆ [0, 1]
s ∈ S Pr(M, s ⊨ φ) ∈ J

6

PCTL - Syntax
Subdivision into state ()- and path-formulae ():

where and .

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

 ∧Φ1 Φ2

 ¬Φ

 (φ)PJ

φ ::=

∣

∣

 XΦ

 U Φ1 Φ2

 UΦ1 ≤nΦ2

a ∈ AP J ⊆ [0, 1]

7

PCTL - Satisfaction Relation
For a given state

For paths :

s ∈ S

s ⊨ a

s ⊨ ¬φ

s ⊨ φ ∧ ψ

s ⊨ (φ) PJ

iff a ∈ L(s),

iff s ⊭ φ,

iff s ⊨ φ and s ⊨ ψ,

iff Pr(s ⊨ φ) ∈ J

π ∈M

π ⊨ Xφ

π ⊨ φ U ψ

π ⊨ φ U ψ ≤n

iff π[1] ⊨ φ

iff ∃j ≥ 0. (π[j] ⊨ ψ ∧ (∀0 ≤ k < j. π[k] ⊨ φ)

iff ∃0 ≤ j ≤ n. (π[j] ⊨ ψ ∧ (∀0 ≤ k < j. π[k] ⊨ φ)

8

PCTL - Semantics
We will use shorthand notations:

etc.

s ⊨ (φ) iff Pr(s ⊨ φ) ∈ JPJ

=P=1 P[1,1]

=P≥0.5 P[0.5,1]

=P>0 P(0,1]

9

Model Checking PCTL
Similar to CTL model checking.

For each subformulae of the parse tree we compute the satisfaction set in a bottom-up
manner.

ψ Sat(ψ)

Sat(true)

Sat(a)

Sat(φ ∧ ψ)

Sat(¬φ)

= S,

= {s ∈ S ∣ a ∈ L(s)}, ∀a ∈ AP ,

= Sat(φ) ∩ Sat(ψ),

= S ∖ Sat(φ).

10

Model Checking PCTL
Similar to CTL model checking.

For each subformulae of the parse tree we compute the satisfaction set in a bottom-up
manner.

The interesting subformulae are of the form

In order to compute we need to compute for all , then

ψ Sat(ψ)

Sat(true)

Sat(a)

Sat(φ ∧ ψ)

Sat(¬φ)

= S,

= {s ∈ S ∣ a ∈ L(s)}, ∀a ∈ AP ,

= Sat(φ) ∩ Sat(ψ),

= S ∖ Sat(φ).

ψ = (φ)PJ

Sat((φ))PJ Pr(s ⊨ φ) s ∈ S

Sat((φ)) = {s ∈ S ∣ Pr(s ⊨ φ) ∈ J}PJ

11

Model Checking PCTL: -OperatorX12

Model Checking PCTL: -Operator
A single matrix-vector multiplication

where

Sat(

X

(Pr(M, s ⊨ Xψ) = A ⋅)s∈S bψ

(s) = 1 iff s ∈ Sat(φ)bφ

(Xφ)) = {s ∈ S ∣ (A ⋅)(s) ∈ J}PJ bφ

13

Model Checking PCTL: -Operator
We want to compute

 U ≤n

(Pr(M, s ⊨ φ U ψ) ≤n)s∈S

14

Model Checking PCTL: -Operator
We want to compute

Let and

 U ≤n

(Pr(M, s ⊨ φ U ψ) ≤n)s∈S

= Sat(ψ), = S ∖ (Sat(φ) ∪ Sat(ψ))S=1 S=0 = S ∖ (Sat() ∪ Sat())S? S=0 S=1

15

Model Checking PCTL: -Operator
We want to compute

Let and

 U ≤n

(Pr(M, s ⊨ φ U ψ) ≤n)s∈S

= Sat(ψ), = S ∖ (Sat(φ) ∪ Sat(ψ))S=1 S=0 = S ∖ (Sat() ∪ Sat())S? S=0 S=1

Pr(M, s ⊨ φ U ψ) = ≤n

⎧

⎩
⎨

⎪⎪⎪

⎪⎪⎪

0
1
0

Pr(s,) ⋅ Pr(M, ⊨ φ U ψ)∑ ∈Ss′ s′ s′ ≤n−1

if s ∈ S=0

if s ∈ S=1

if s ∈ ∧ n = 0S?

else

16

Model Checking PCTL: -Operator
We want to compute

Let and

Algorithm:

We let be the matrix of the induced Markov chain

The probability for :

With multiple matrix-vector multiplications:

 U ≤n

(Pr(M, s ⊨ φ U ψ) ≤n)s∈S

= Sat(ψ), = S ∖ (Sat(φ) ∪ Sat(ψ))S=1 S=0 = S ∖ (Sat() ∪ Sat())S? S=0 S=1

Aφ,ψ M[∪]S=1 S=0

n = 0 (Pr(M, s ⊨ φ U ψ) = ≤0)s∈S bψ

(Pr(M, s ⊨ φ U ψ) = ⋅ (Pr(M, s ⊨ φ U ψ) ≤i)s∈S Aφ,ψ ≤i−1)s∈S

17

Model Checking PCTL: -Operator U 18

Model Checking PCTL: -Operator
We can use the same procedure as discussed in the last lecture:

We compute:
 and

Computing the probabilities for by solving a linear equation system.

 U

= Sat((φ U ψ))S=1 P=1 = Sat((φ U ψ))S=0 P=0

S?

19

Model Checking PCTL - Time Complexity
We denote with the number of states plut the number of transitions for which

.

-Operator:

-Operator: Let be the maximal step-bound appearing in any subformula.

-Operator:

In total we have that the model checking problem can be solved in

where is the amount of subformulae to be checked.

size(M) (s,)s′

P(s,) > 0s′

X

O(poly(size(M)))

 U ≤n nmax

O(⋅ poly(size(M)))nmax

 U

O(poly(size(M)))

M, s ⊨ φ

O(⋅ poly(size(M)) ⋅ |φ|)nmax

|φ|

20

PCTL*
As with CTL* we drop the requirement to prefix every linear operator with .PJ

Φ ::=

∣

∣

∣

∣

 true

 a

 ∧Φ1 Φ2

 ¬Φ

 (φ)PJ

φ ::=

∣

∣

∣

 Φ

 ¬φ

 Xφ

 U Φ1 Φ2

21

Model Checking PCTL*
Same as PCTL just one crucial difference: We now have subformulae from LTL which need a different
procedure.

Such formulae , where is an LTL formula need special treatment:ψ = (φ)PJ φ

22

Model Checking PCTL*
Same as PCTL just one crucial difference: We now have subformulae from LTL which need a different
procedure.

Such formulae , where is an LTL formula need special treatment:

All maximal state subformulae in are replaced by their satisfaction set to get LTL formulae .

We need to use automata-based techniques to compute such satisfaction sets.

ψ = (φ)PJ φ

φ φ′

Sat((φ)) = {s ∈ S ∣ Pr(s ⊨ φ) ∈ J}PJ

23

Product-MC
Intuition: The automata acts as a witness for φ′

Taken from https://moves rwth-aachen de/wp-content/uploads/WS1516/mvps/mvps2015 lec05 pdf#page=46

24

https://moves.rwth-aachen.de/wp-content/uploads/WS1516/mvps/mvps2015_lec05.pdf#page=46

Product-MC
Let be a Markov chain and be a DFA.

 if , else,

M = (S,P, , AP , L)s0 A = (Q, , δ, , F)2AP q0

M⊗A = (S × Q, , ⟨s, ⟩, {acc},)P
′ qs L′

(⟨s, q⟩) = {acc}L′ q ∈ F (⟨s, q⟩) = ∅L′

(⟨s, q⟩, ⟨ , ⟩) = {P
′ s′ q ′ P(s,)s′

0
if = δ(q, L())q ′ s′

else

25

Product-MC
Let be a Markov chain and be a DFA.

 if , else,

Each path fragment in there exists a unique run in .

This works in a similar fashion for different types of automata, after small modifications of the set of
accepting states.

M = (S,P, , AP , L)s0 A = (Q, , δ, , F)2AP q0

M⊗A = (S × Q, , ⟨s, ⟩, {acc},)P
′ qs L′

(⟨s, q⟩) = {acc}L′ q ∈ F (⟨s, q⟩) = ∅L′

(⟨s, q⟩, ⟨ , ⟩) = {P
′ s′ q ′ P(s,)s′

0
if = δ(q, L())q ′ s′

else

π = …s0s1s2 M …q0q1q2 A

26

Automata Types
A very brief overview:

Let be a Markov chain and a deterministic automata.

Safety Properties - Something bad should never happen

Let be a safety property and a DFA for the set of bad prefixes of . We are interested in

M A

Psafe A Psafe

Pr(M, s ⊨) =Psafe

=

Pr(M⊗A, ⟨s, ⟩ ⊭ F acc)qs

1 − Pr(M⊗A, ⟨s, ⟩ ⊨ F acc)qs

27

Automata Types
A very brief overview:

Let be a Markov chain and a deterministic automata.

DBA-De�nable Properties

Let be a property that can be described by a deterministic Büchi automata . We are interested in

Recall that the longterm behaviour of guarantees that we end up in a BSCC and see all states in
infinitely often.

This means that we only need to solve a reachability problem in !

M A

P A

Pr(M, s ⊨ A) = Pr(M⊗A, ⟨s, ⟩ ⊨ GF acc)qs

M T T

M⊗A

28

Automata Types
A very brief overview:

Let be a Markov chain and a deterministic automata.

DRA-Based Analysis

Let be an -regular property. can be described by a deterministic Rabin automata .

The acceptance condition of is a set of tuples of atomic propositions . For
one we want to see only finitely many atomic propositions from and infinitely many from

.

M A

P ω P A

A {(,), … , (,)}L1 K1 Lm Km

i ∈ [1, m] Li

Ki

29

Automata Types
A very brief overview:

Let be a Markov chain and a deterministic automata.

DRA-Based Analysis

Let be an -regular property. can be described by a deterministic Rabin automata .

The acceptance condition of is a set of tuples of atomic propositions . For
one we want to see only finitely many atomic propositions from and infinitely many from

.

We can work with BSCCs again!

 is an accepting BSCC if: and

Let , then

M A

P ω P A

A {(,), … , (,)}L1 K1 Lm Km

i ∈ [1, m] Li

Ki

T T ∩ (S ×) = ∅Li T ∩ (S ×) ≠ ∅Ki

U = T⋃T an accepting BSCC Pr(M, s ⊨ A) = Pr(M⊗A, ⟨s, ⟩ ⊨ F U)qs

30

Example
Knuth-Yao-Die: Simulating a die only using a fair coin.

31

Example
dtmc

module die
 s : [0..7] init 0;
 d : [0..6] init 0;

 [] s=0 -> 0.5 : (s'=1) + 0.5 : (s'=2);
 [] s=1 -> 0.5 : (s'=3) + 0.5 : (s'=4);
 [] s=2 -> 0.5 : (s'=5) + 0.5 : (s'=6);
 [] s=3 -> 0.5 : (s'=1) + 0.5 : (s'=7) & (d'=1);
 [] s=4 -> 0.5 : (s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);
 [] s=5 -> 0.5 : (s'=7) & (d'=4) + 0.5 : (s'=7) & (d'=5);
 [] s=6 -> 0.5 : (s'=2) + 0.5 : (s'=7) & (d'=6);
 [] s=7 -> 1: (s'=7);

endmodule

label "one" = s=7&d=1;
label "two" = s=7&d=2;
label "three" = s=7&d=3;
label "done" = s=7;

P>=1/6 [F (s=4 & X (s=7&d=3))]; P=? [(F (X (s=6 & (XX s=5)))) & (F G (d!=5))];

32

