TU

Grazm

Probabilistic Model ChecRing

Stefan Pranger

02. 06. 2022

TU

Grazm

Communication Protocol

delivered

So far: Reachability Probabilities and how to compﬁte them.

Today: More expressive properties!

TU

Grazm

Longterm Behaviour of M(s

"Fairness’ from Probabilistic Behaviour

Every follow-up state u of t € S will be visited infinitely often, given % is visited infinitely often.

TU

Grazm

Longterm Behaviour of MCs

"Fairness’ from Probabilistic Behaviour

Every follow-up state u of t € S will be visited infinitely often, given % is visited infinitely often.

Bottom Strongly Connected Components

We have heard about SCCs already

Recap: A strongly connected component is set of states, such that there is a path between any two states in
the component.

A bottom SCC is an SCC such that no state outside the SCC is reachable.

This will come in quite handy later today!

TU

Grazm

Longterm Behaviour of MCs

From the two discussed properties we can deduce the following:

Pr{m € Paths(s) | inf(r) € BSCC(M)} =1

In words: Almost surely a BSCC will be reached and all of its states will be visited infinitely often.

TU

Grazm

ﬁ Probabilistic Computation Tree Logic

Probabilistic Computation Tree Logic [PCTL] is the probabilistic extension of CTL.

« Boolean state representation.

« V and 3 are replaced by Ps(¢), where J C [0, 1]
o The interpretation for each state s € S: Pr(M,s =) € J

TU

Grazm

PCTL - Syntax

Subdivision into state (®)- and path-formulae (¢):

® 1= true @ = XP
a | &, U &,
®; N Dy | &, U =",
L
Py(e)

wherea € AP and J C [0, 1].

TU

Grazm

ﬁ PCTL - Satisfaction Relation

For a given state s € S
= a iff a € L(s),

= iff s ~ ¢,

= o A\ iff s = and s = 1,
=P () iff Pr(s =¢) e J

®w »w »w O»

For paths m € M:
= X iff w[l] =

TEeUY iff 35> 0. (nljl FpA(VO<k<j nlk] =)
7= o U<y iff 30 <j<n. (n[j] EYAO<k<j. alk] =)

TU

Grazm

H PCTL - Semantics
sEP;(p)iff Pr(sEyp) e J

We will use shorthand notations:
« Poy =P
« P>o5 = P51
« Po =]P(O,l]

e efc.

TU

Grazm

Model Checking PCTL

Similar to CTL model checking.

For each subformulae 1) of the parse tree we compute the satisfaction set Sat (1)) in a bottom-up

Sat(true) = S,
Sat(a) ={s€ S|ac L(s)},Vac AP,
Sat(p A1) = Sat(p) N Sat(h),
Sat(—p) =S\ Sat(yp).

TU

Grazm

Model Checking PCTL

Similar to CTL model checking.

For each subformulae 1) of the parse tree we compute the satisfaction set Sat (1)) in a bottom-up

Sat(true) =
Sat(a) = {s € S|aecL(s)},Vac AP,
Sat(p N p) = Sat(p) N Sat(),
Sat(—p) =S\ Sat(yp).

The interesting subformulae are of the form ¢ = P;(y)
In order to compute Sat(P;(¢)) we need to compute Pr(s |= ¢) forall s € S, then
Sat(P;(p)) =15 S| Pr(s =) € J}

Model ChecRing PCTL: X-Operator

TU

Grazm

Model Checking PCTL: X-Operator

A single matrix-vector multiplication
(Pr(M, s = X¢))scs = A - by
where b, (s) = 1 iff s € Sat(p)
Sat(Py(Xp)) ={s€ S| (A-by)(s) € J}

TU

Grazm

Model Checking PCTL: U ="-Operator

We want to compute

(Pr(M,s = ¢ U="1))es

TU

Grazm

Model Checking PCTL: U ="-Operator

We want to compute

(Pr(M, s |= ¢ U ="))scs
Let S_; = Sat(v), S—o = S\ (Sat(p) USat(y))) and S; = S\ (Sat(S—y) U Sat(S-1))

Model ChecRing

We want to compute

PCTL: U ="-0perator

(Pr(M,s = ¢ U="1))es

TU

Grazm

Let S_; = Sat(v), S—o = S\ (Sat(p) USat(y))) and S; = S\ (Sat(S—y) U Sat(S-1))

Pr(M,s = U =") = <

(0
1
0

\ Zs’es PT(S, 8/)) PT(M, s'): 2 U §n—1,¢)

ifse S

if s e S
ifsecSAn=0
else

TU

Grazm

Model Checking PCTL: U ="-Operator

We want to compute

(Pr(M,s = ¢ U ="4)),es
Let S—; = Sat(¢), S—o = S\ (Sat(p) USat(1)) and S? = S\ (Sat(S—) U Sat(S-1))
Algorithm:
« Welet A, be the matrix of the induced Markov chain M[S—1 U S—g]
« The probability for n = 0: (Pr(M, s = ¢ U =29))scs = by

o With multiple matrix-vector multiplications:

(PT(M7 $): 2 U Si¢))s€5 — Acp,¢ ’ (PT(M, $ }: ¥ U Si_l%b))ses

Model Checking PCTL: U -Operator

TU

Grazm

Model Checking PCTL: U -Operator

We can use the same procedure as discussed in the last lecture:

« We compute:

o S—1 = Sat(P_1(¢ U 1)) and S—g = Sat(P_o(p U v))

« Computing the probabilities for S» by solving a linear equation system.

TU

Grazm

Model ChecRing PCTL - Time Complexity

We denote with size(M) the number of states plut the number of transitions (s, s') for which
P(s,s") > 0.

« X-Operator:
O(poly(size(M)))

« U =".Operator: Let N4z be the maximal step-bound appearing in any subformula.

O(Nmaz - poly(size(M)))
« U -Operator:
O(poly(size(M)))

In total we have that the model checking problem M, s): o can be solved in

O(Nmag - poly(size(M)) - |¢|)

where || is the amount of subformulae to be checked.

TU

Grazm

pCTL*

As with CTL* we drop the requirement to prefix every linear operator with P ;.

® ::=true pu=2P
a |~
NPy | X
L | &, U &,
Py(e)

TU

Grazm

i

§ Model Checking PCTL*

Same as PCTL just one crucial difference: We now have subformulae from LTL which need a different
procedure.

22

Such formulae ¥ = P (), where ¢ is an LTL formula need special treatment:

TU

Grazm

Model ChecRing PCTL*

Same as PCTL just one crucial difference: We now have subformulae from LTL which need a different
procedure.

Such formulae ¥ = P (), where ¢ is an LTL formula need special treatment:

« All maximal state subformulae in ¢ are replaced by their satisfaction set to get LTL formulae ¢’.

» Sat(Py(p)) ={s €S| Pr(s = p) € J}

We need to use automata-based techniques to compute such satisfaction sets.

TU

Grazm

Product-M(

Intuition: The automata acts as a witness for ¢’

Product construction: intuition

Produc DRA A
with state space S with state space Q
B Qo € Qo
T,,. ~Ls)=A0 ,,_,(5‘!3]91,_) 0 o
B B /1
5[1 ,,,,,, Hes)=A | g l??,) I
e g2
; —C s (ﬁz;IFB?,,_,,_, &
.
s L= | (o, g0 A,
B R [YE]

product D & A

Talzon fram httne//mnywraoc riarth_aarhon Aal/sameernantoant/iinlaade/TIAIR1E21 R/ myrme/myrne?2N12 1larNE nAfHnaco=1R

https://moves.rwth-aachen.de/wp-content/uploads/WS1516/mvps/mvps2015_lec05.pdf#page=46

TU

Grazm

" Product-M(

Let M = (S, P, sy, AP, L) be a Markov chain and A = (Q, 247, §, gy, F) be a DFA.
MA=(SxQ,P, (s, q,),{acc}, L")
- L'((s,q)) = {acc} ifg € F, L'({s,q)) = 0 else,

(5,0 () = { o) HE =G EED

0 else

TU

Grazm

Product-M(

Let M = (S, P, sy, AP, L) be a Markov chain and A = (Q, 247, §, gy, F) be a DFA.
MA=(SxQ,P, (s, q,),{acc}, L")
- L'((s,q)) = {acc} ifg € F, L'({s,q)) = 0 else,

- P'((s,a),(s,q')) = {]ép(s’) ;flgé =@ L)

Each path fragment m = s¢S182 . .. in M there exists a unique run qpqi1¢o . . . in A.

This works in a similar fashion for different types of automata, after small modifications of the set of
accepting states.

TU

Grazm

Automata Types

A very brief overview:

Let M be a Markov chain and A a deterministic automata.

Safety Properties - Something bad should never happen

Let P, . be a safety property and A a DFA for the set of bad prefixes of P, fe- We are interested in

Pr(M,s = Pyfe) =Pr(M® A, (s,qs) ¥ F acc)
=1—-Pr(M® A, (s,qs) = F acc)

TU

Grazm

Automata Types

A very brief overview:

Let M be a Markov chain and A a deterministic automata.

DBA-Definable Properties

Let P be a property that can be described by a deterministic Biichi automata .A. We are interested in
Pr(M,s=A)=Pr(M®A, (s,qs) = GF acc)

Recall that the longterm behaviour of M guarantees that we end up in a BSCC 71" and see all states in 7T’
infinitely often.

This means that we only need to solve a reachability problem in M ® A!

TU

Grazm

Automata Types

A very brief overview:

Let M be a Markov chain and A a deterministic automata.

DRA-Based Analysis

Let P be an w-regular property. P can be described by a deterministic Rabin automata A.

The acceptance condition of 4 is a set of tuples of atomic propositions {(L1, K1), ..., (Lmn, K)}. For

one i € [1, m] we want to see only finitely many atomic propositions from L; and infinitely many from
K;.

TU

Grazm

Automata Types

A very brief overview:

Let M be a Markov chain and A a deterministic automata.

DRA-Based Analysis

Let P be an w-regular property. P can be described by a deterministic Rabin automata A.

The acceptance condition of 4 is a set of tuples of atomic propositions {(L1, K1), ..., (Lmn, K)}. For

one i € [1, m] we want to see only finitely many atomic propositions from L; and infinitely many from
K;.

We can work with BSCCs again!
T is an accepting BSCCif: TN (S X L;) =0 andT N (S x K;) # 0
LetU = UTan accepting BSCC T, then PT(M’ s |: A) — PT(M ® A? <S7 qs> ': F U)

TU

Grazm

Example

Knuth-Yao-Die: Simulating a die only using a fair coin.

TU

Grazm

dtmc
module die
s : [0..7] init O;
d : [0..6] init 0O;
[] s=0 -> 0.5 : (s'=1) + 0.5 : (s'=2);
[] s=1 -> 0.5 : (s'=3) + 0.5 : (s'=4);
[] s=2 -> 0.5 : (s'=5) + 0.5 : (s'=6);
[] s=3 -> 0.5 : (s'=1) + 0.5 : (s'=7) & (d'=1);
[] s=4 -> 0.5 : (s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);
[] s=5 -> 0.5 : (s'=7) & (d'=4) + 0.5 : (s'=7) & (d'=5);
[] s=6 -> 0.5 : (s'=2) + 0.5 : (s'=7) & (d'=6);
[] s=7 -> 1: (s'=7);
endmodule
label "one" = s=7&d=1;
label "two" = s=78&d=2;

label "three" = s=78&d=3;
label "done" = s=7;

P>=1/6 [F (s=4 & X (s=78d=3)) 1; P=2 [(F (X (s=6 & (XX s=5)))) & (F G (d!=5))];

