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Communication Protocol

So far: Reachability Probabilities and how to compute them.

Today: More expressive properties!

2



Longterm Behaviour of MCs
"Fairness" from Probabilistic Behaviour
Every follow-up state  of  will be visited infinitely often, given  is visited infinitely often.u t ∈ S t
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Longterm Behaviour of MCs
"Fairness" from Probabilistic Behaviour
Every follow-up state  of  will be visited infinitely often, given  is visited infinitely often.

Bottom Strongly Connected Components
We have heard about SCCs already

Recap: A strongly connected component is set of states, such that there is a path between any two states in
the component.

A bottom SCC is an SCC such that no state outside the SCC is reachable.

This will come in quite handy later today!

u t ∈ S t
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Longterm Behaviour of MCs
From the two discussed properties we can deduce the following:

In words: Almost surely a BSCC will be reached and all of its states will be visited infinitely often.

Pr{π ∈ Paths(s) ∣ inf(π) ∈ BSCC(M)} = 1

5



Probabilistic Computation Tree Logic
Probabilistic Computation Tree Logic [PCTL] is the probabilistic extension of CTL.

Boolean state representation.

 are replaced by , where 
The interpretation for each state : 

∀ and ∃ (φ)PJ J ⊆ [0, 1]
s ∈ S Pr(M, s ⊨ φ) ∈ J
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PCTL - Syntax
Subdivision into state ( )- and path-formulae ( ):

where  and .

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

  ∧Φ1 Φ2

 ¬Φ

  (φ)PJ

φ ::=

∣

∣

 XΦ

   U Φ1 Φ2

   UΦ1  ≤nΦ2

a ∈ AP J ⊆ [0, 1]
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PCTL - Satisfaction Relation
For a given state 

For paths :

s ∈ S

s ⊨ a 

s ⊨ ¬φ 

s ⊨ φ ∧ ψ 

s ⊨ (φ) PJ

iff a ∈ L(s),

iff s ⊭ φ,

iff s ⊨ φ and s ⊨ ψ,

iff Pr(s ⊨ φ) ∈ J

π ∈M

π ⊨ Xφ

π ⊨ φ U ψ

π ⊨ φ U ψ ≤n

iff π[1] ⊨ φ

iff ∃j ≥ 0. (π[j] ⊨ ψ ∧ (∀0 ≤ k < j.  π[k] ⊨ φ)

iff ∃0 ≤ j ≤ n.  (π[j] ⊨ ψ ∧ (∀0 ≤ k < j.  π[k] ⊨ φ)
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PCTL - Semantics
We will use shorthand notations:

etc.

s ⊨ (φ) iff Pr(s ⊨ φ) ∈ JPJ

=P=1 P[1,1]

=P≥0.5 P[0.5,1]

=P>0 P(0,1]
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Model Checking PCTL
Similar to CTL model checking.

For each subformulae  of the parse tree we compute the satisfaction set  in a bottom-up
manner.

ψ Sat(ψ)

Sat(true)

Sat(a)

Sat(φ ∧ ψ)

Sat(¬φ)

= S,

= {s ∈ S ∣ a ∈ L(s)}, ∀a ∈ AP ,

= Sat(φ) ∩ Sat(ψ),

= S ∖ Sat(φ).
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Model Checking PCTL
Similar to CTL model checking.

For each subformulae  of the parse tree we compute the satisfaction set  in a bottom-up
manner.

The interesting subformulae are of the form 

In order to compute  we need to compute  for all , then

ψ Sat(ψ)

Sat(true)

Sat(a)

Sat(φ ∧ ψ)

Sat(¬φ)

= S,

= {s ∈ S ∣ a ∈ L(s)}, ∀a ∈ AP ,

= Sat(φ) ∩ Sat(ψ),

= S ∖ Sat(φ).

ψ = (φ)PJ

Sat( (φ))PJ Pr(s ⊨ φ) s ∈ S

Sat( (φ)) = {s ∈ S ∣ Pr(s ⊨ φ) ∈ J}PJ
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Model Checking PCTL: -OperatorX12



Model Checking PCTL: -Operator
A single matrix-vector multiplication

where 

Sat(

X

(Pr(M, s ⊨ Xψ) = A ⋅)s∈S bψ

(s) = 1 iff s ∈ Sat(φ)bφ

(Xφ)) = {s ∈ S ∣ (A ⋅ )(s) ∈ J}PJ bφ
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Model Checking PCTL: -Operator
We want to compute

 U ≤n

(Pr(M, s ⊨ φ U ψ) ≤n )s∈S
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Model Checking PCTL: -Operator
We want to compute

Let  and 

 U ≤n

(Pr(M, s ⊨ φ U ψ) ≤n )s∈S

= Sat(ψ),   = S ∖ (Sat(φ) ∪ Sat(ψ))S=1 S=0 = S ∖ (Sat( ) ∪ Sat( ))S? S=0 S=1
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Model Checking PCTL: -Operator
We want to compute

Let  and 

 U ≤n

(Pr(M, s ⊨ φ U ψ) ≤n )s∈S

= Sat(ψ),   = S ∖ (Sat(φ) ∪ Sat(ψ))S=1 S=0 = S ∖ (Sat( ) ∪ Sat( ))S? S=0 S=1

Pr(M, s ⊨ φ U ψ) = ≤n

⎧

⎩
⎨

⎪⎪⎪

⎪⎪⎪

0
1
0

Pr(s, ) ⋅ Pr(M, ⊨ φ U ψ)∑ ∈Ss′ s′ s′  ≤n−1

if s ∈ S=0

if s ∈ S=1

if s ∈ ∧ n = 0S?

else
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Model Checking PCTL: -Operator
We want to compute

Let  and 

Algorithm:

We let  be the matrix of the induced Markov chain 

The probability for : 

With multiple matrix-vector multiplications: 

 U ≤n

(Pr(M, s ⊨ φ U ψ) ≤n )s∈S

= Sat(ψ),   = S ∖ (Sat(φ) ∪ Sat(ψ))S=1 S=0 = S ∖ (Sat( ) ∪ Sat( ))S? S=0 S=1

Aφ,ψ M[ ∪ ]S=1 S=0

n = 0 (Pr(M, s ⊨ φ U ψ) = ≤0 )s∈S bψ

(Pr(M, s ⊨ φ U ψ) = ⋅ (Pr(M, s ⊨ φ U ψ) ≤i )s∈S Aφ,ψ  ≤i−1 )s∈S
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Model Checking PCTL: -Operator U 18



Model Checking PCTL: -Operator
We can use the same procedure as discussed in the last lecture:

We compute:
 and 

Computing the probabilities for  by solving a linear equation system.

 U 

=  Sat( (φ U ψ))S=1 P=1 =  Sat( (φ U ψ))S=0 P=0

S?
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Model Checking PCTL - Time Complexity
We denote with  the number of states plut the number of transitions  for which 

.

-Operator:

-Operator: Let  be the maximal step-bound appearing in any subformula.

-Operator:

In total we have that the model checking problem  can be solved in

where  is the amount of subformulae to be checked.

size(M) (s, )s′

P(s, ) > 0s′

X

O(poly(size(M)))

 U ≤n nmax

O( ⋅ poly(size(M)))nmax

 U 

O(poly(size(M)))

M, s ⊨ φ

O( ⋅ poly(size(M)) ⋅ |φ|)nmax

|φ|
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PCTL*
As with CTL* we drop the requirement to prefix every linear operator with .PJ

Φ ::=

∣

∣

∣

∣

 true

 a

  ∧Φ1 Φ2

 ¬Φ

  (φ)PJ

φ ::=

∣

∣

∣

 Φ

 ¬φ

 Xφ

   U Φ1 Φ2
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Model Checking PCTL*
Same as PCTL just one crucial difference: We now have subformulae from LTL which need a different
procedure.

Such formulae , where  is an LTL formula need special treatment:ψ = (φ)PJ φ
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Model Checking PCTL*
Same as PCTL just one crucial difference: We now have subformulae from LTL which need a different
procedure.

Such formulae , where  is an LTL formula need special treatment:

All maximal state subformulae in  are replaced by their satisfaction set to get LTL formulae .

We need to use automata-based techniques to compute such satisfaction sets.

ψ = (φ)PJ φ

φ φ′

Sat( (φ)) = {s ∈ S ∣ Pr(s ⊨ φ) ∈ J}PJ
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Product-MC
Intuition: The automata acts as a witness for φ′

Taken from https://moves rwth-aachen de/wp-content/uploads/WS1516/mvps/mvps2015 lec05 pdf#page=46
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Product-MC
Let  be a Markov chain and  be a DFA.

 if ,  else,

M = (S,P, , AP , L)s0 A = (Q, , δ, , F)2AP q0

M⊗A = (S × Q, , ⟨s, ⟩, {acc}, )P
′ qs L′

(⟨s, q⟩) = {acc}L′ q ∈ F (⟨s, q⟩) = ∅L′

(⟨s, q⟩, ⟨ , ⟩) = {P
′ s′ q ′ P(s, )s′

0
if  = δ(q, L( ))q ′ s′

else
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Product-MC
Let  be a Markov chain and  be a DFA.

 if ,  else,

Each path fragment  in  there exists a unique run  in .

This works in a similar fashion for different types of automata, after small modifications of the set of
accepting states.

M = (S,P, , AP , L)s0 A = (Q, , δ, , F)2AP q0

M⊗A = (S × Q, , ⟨s, ⟩, {acc}, )P
′ qs L′

(⟨s, q⟩) = {acc}L′ q ∈ F (⟨s, q⟩) = ∅L′

(⟨s, q⟩, ⟨ , ⟩) = {P
′ s′ q ′ P(s, )s′

0
if  = δ(q, L( ))q ′ s′

else

π = …s0s1s2 M …q0q1q2 A
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Automata Types
A very brief overview:

Let  be a Markov chain and  a deterministic automata.

Safety Properties - Something bad should never happen

Let  be a safety property and  a DFA for the set of bad prefixes of . We are interested in

M A

Psafe A Psafe

Pr(M, s ⊨ ) =Psafe

=

Pr(M⊗A, ⟨s, ⟩ ⊭ F acc)qs

1 − Pr(M⊗A, ⟨s, ⟩ ⊨ F acc)qs
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Automata Types
A very brief overview:

Let  be a Markov chain and  a deterministic automata.

DBA-De�nable Properties

Let  be a property that can be described by a deterministic Büchi automata . We are interested in

Recall that the longterm behaviour of  guarantees that we end up in a BSCC  and see all states in 
infinitely often.

This means that we only need to solve a reachability problem in !

M A

P A

Pr(M, s ⊨ A) = Pr(M⊗A, ⟨s, ⟩ ⊨ GF acc)qs

M T T

M⊗A
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Automata Types
A very brief overview:

Let  be a Markov chain and  a deterministic automata.

DRA-Based Analysis

Let  be an -regular property.  can be described by a deterministic Rabin automata .

The acceptance condition of  is a set of tuples of atomic propositions . For
one  we want to see only finitely many atomic propositions from  and infinitely many from 

.

M A

P ω P A

A {( , ), … , ( , )}L1 K1 Lm Km

i ∈ [1, m] Li

Ki
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Automata Types
A very brief overview:

Let  be a Markov chain and  a deterministic automata.

DRA-Based Analysis

Let  be an -regular property.  can be described by a deterministic Rabin automata .

The acceptance condition of  is a set of tuples of atomic propositions . For
one  we want to see only finitely many atomic propositions from  and infinitely many from 

.

We can work with BSCCs again!

 is an accepting BSCC if:  and 

Let , then 

M A

P ω P A

A {( , ), … , ( , )}L1 K1 Lm Km

i ∈ [1, m] Li

Ki

T T ∩ (S × ) = ∅Li T ∩ (S × ) ≠ ∅Ki

U = T⋃T  an accepting BSCC Pr(M, s ⊨ A) = Pr(M⊗A, ⟨s, ⟩ ⊨ F U)qs
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Example
Knuth-Yao-Die: Simulating a die only using a fair coin.
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Example
dtmc

module die
    s : [0..7] init 0;
    d : [0..6] init 0;

    [] s=0 -> 0.5 : (s'=1) + 0.5 : (s'=2);
    [] s=1 -> 0.5 : (s'=3) + 0.5 : (s'=4);
    [] s=2 -> 0.5 : (s'=5) + 0.5 : (s'=6);
    [] s=3 -> 0.5 : (s'=1) + 0.5 : (s'=7) & (d'=1);
    [] s=4 -> 0.5 : (s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);
    [] s=5 -> 0.5 : (s'=7) & (d'=4) + 0.5 : (s'=7) & (d'=5);
    [] s=6 -> 0.5 : (s'=2) + 0.5 : (s'=7) & (d'=6);
    [] s=7 -> 1: (s'=7);

endmodule

label "one" = s=7&d=1;
label "two" = s=7&d=2;
label "three" = s=7&d=3;
label "done" = s=7;

P>=1/6 [ F (s=4 & X (s=7&d=3)) ]; P=? [ (F (X (s=6 & (XX s=5)))) & (F G (d!=5))];
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