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Communication Protocol

delivered

So far: Reachability Probabilities and how to compﬁte them.

Today: More expressive properties!
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Longterm Behaviour of M(s

"Fairness’ from Probabilistic Behaviour

Every follow-up state u of t € S will be visited infinitely often, given % is visited infinitely often.
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Longterm Behaviour of MCs

"Fairness’ from Probabilistic Behaviour

Every follow-up state u of t € S will be visited infinitely often, given % is visited infinitely often.

Bottom Strongly Connected Components

We have heard about SCCs already

Recap: A strongly connected component is set of states, such that there is a path between any two states in
the component.

A bottom SCC is an SCC such that no state outside the SCC is reachable.

This will come in quite handy later today!
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Longterm Behaviour of MCs

From the two discussed properties we can deduce the following:

Pr{m € Paths(s) | inf(r) € BSCC(M)} =1

In words: Almost surely a BSCC will be reached and all of its states will be visited infinitely often.
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ﬁ Probabilistic Computation Tree Logic

Probabilistic Computation Tree Logic [PCTL] is the probabilistic extension of CTL.

« Boolean state representation.

« V and 3 are replaced by Ps(¢), where J C [0, 1]
o The interpretation for each state s € S: Pr(M,s =) € J
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PCTL - Syntax

Subdivision into state (®)- and path-formulae (¢):

® 1= true @ = XP
a | &, U &,
®; N Dy | &, U =",
L
Py(e)

wherea € AP and J C [0, 1].
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ﬁ PCTL - Satisfaction Relation

For a given state s € S
= a iff a € L(s),

= iff s ~ ¢,

= o A\ iff s = and s = 1,
=P () iff Pr(s =¢) e J

®w »w »w O»

For paths m € M:
= X iff w[l] =

TEeUY iff 35> 0. (nljl FpA(VO<k<j nlk] =)
7= o U<y iff 30 <j<n. (n[j] EYAO<k<j. alk] = )
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H PCTL - Semantics
sEP;(p)iff Pr(sEyp) e J

We will use shorthand notations:
« Poy =P
« P>o5 = P51
« Po = ]P(O,l]

e efc.
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Model Checking PCTL

Similar to CTL model checking.

For each subformulae 1) of the parse tree we compute the satisfaction set Sat (1)) in a bottom-up

Sat(true) = S,
Sat(a) ={s€ S|ac L(s)},Vac AP,
Sat(p A1) = Sat(p) N Sat(h),
Sat(—p) =S\ Sat(yp).
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Model Checking PCTL

Similar to CTL model checking.

For each subformulae 1) of the parse tree we compute the satisfaction set Sat (1)) in a bottom-up

Sat(true) =
Sat(a) = {s € S|aecL(s)},Vac AP,
Sat(p N p) = Sat(p) N Sat(),
Sat(—p) =S\ Sat(yp).

The interesting subformulae are of the form ¢ = P;(y)
In order to compute Sat(P;(¢)) we need to compute Pr(s |= ¢) forall s € S, then
Sat(P;(p)) =15 S| Pr(s =) € J}



Model ChecRing PCTL: X-Operator
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Model Checking PCTL: X-Operator

A single matrix-vector multiplication
(Pr(M, s = X¢))scs = A - by
where b, (s) = 1 iff s € Sat(p)
Sat(Py(Xp)) ={s€ S| (A-by)(s) € J}
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Model Checking PCTL: U ="-Operator

We want to compute

(Pr(M,s = ¢ U="1))es
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Model Checking PCTL: U ="-Operator

We want to compute

(Pr(M, s |= ¢ U ="))scs
Let S_; = Sat(v), S—o = S\ (Sat(p) USat(y))) and S; = S\ (Sat(S—y) U Sat(S-1))



Model ChecRing

We want to compute

PCTL: U ="-0perator

(Pr(M,s = ¢ U="1))es
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Let S_; = Sat(v), S—o = S\ (Sat(p) USat(y))) and S; = S\ (Sat(S—y) U Sat(S-1))

Pr(M,s = U =") = <

(0
1
0

\ Zs’es PT(S, 8/) ) PT(M, s' ): 2 U §n—1,¢)

ifse S

if s e S
ifsecSAn=0
else



TU

Grazm

Model Checking PCTL: U ="-Operator

We want to compute

(Pr(M,s = ¢ U ="4)),es
Let S—; = Sat(¢), S—o = S\ (Sat(p) USat(1)) and S? = S\ (Sat(S—) U Sat(S-1))
Algorithm:
« Welet A, be the matrix of the induced Markov chain M[S—1 U S—g]
« The probability for n = 0: (Pr(M, s = ¢ U =29))scs = by

o With multiple matrix-vector multiplications:

(PT(M7 $ ): 2 U Si¢))s€5 — Acp,¢ ’ (PT(M, $ }: ¥ U Si_l%b))ses



Model Checking PCTL: U -Operator
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Model Checking PCTL: U -Operator

We can use the same procedure as discussed in the last lecture:

« We compute:

o S—1 = Sat(P_1(¢ U 1)) and S—g = Sat(P_o(p U v))

« Computing the probabilities for S» by solving a linear equation system.
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Model ChecRing PCTL - Time Complexity

We denote with size(M) the number of states plut the number of transitions (s, s') for which
P(s,s") > 0.

« X-Operator:
O(poly(size(M)))

« U =".Operator: Let N4z be the maximal step-bound appearing in any subformula.

O(Nmaz - poly(size(M)))
« U -Operator:
O(poly(size(M)))

In total we have that the model checking problem M, s ): o can be solved in

O(Nmag - poly(size(M)) - |¢|)

where || is the amount of subformulae to be checked.
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pCTL*

As with CTL* we drop the requirement to prefix every linear operator with P ;.

® ::=true pu=2P
a |~
NPy | X
L | &, U &,
Py(e)
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i

§ Model Checking PCTL*

Same as PCTL just one crucial difference: We now have subformulae from LTL which need a different
procedure.

22

Such formulae ¥ = P (), where ¢ is an LTL formula need special treatment:
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Model ChecRing PCTL*

Same as PCTL just one crucial difference: We now have subformulae from LTL which need a different
procedure.

Such formulae ¥ = P (), where ¢ is an LTL formula need special treatment:

« All maximal state subformulae in ¢ are replaced by their satisfaction set to get LTL formulae ¢’.

» Sat(Py(p)) ={s €S| Pr(s = p) € J}

We need to use automata-based techniques to compute such satisfaction sets.
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Product-M(

Intuition: The automata acts as a witness for ¢’

Product construction: intuition

Produc DRA A
with state space S with state space Q
B Qo € Qo
T,,. ~Ls)=A0 ,,_,(5‘!3]91,_) 0 o
B B /1
5[1 ,,,,,, Hes)=A | g l??,) I
e g2
; —C s (ﬁz;IFB?,,_,,_, &
.
s L= | (o, g0 A,
B R [YE]

product D & A

Talzon fram httne//mnywraoc riarth_aarhon Aal/sameernantoant/iinlaade/TIAIR1E21 R/ myrme/myrne?2N12 1larNE nAfHnaco=1R


https://moves.rwth-aachen.de/wp-content/uploads/WS1516/mvps/mvps2015_lec05.pdf#page=46
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" Product-M(

Let M = (S, P, sy, AP, L) be a Markov chain and A = (Q, 247, §, gy, F) be a DFA.
MA=(SxQ,P, (s, q,),{acc}, L")
- L'((s,q)) = {acc} ifg € F, L'({s,q)) = 0 else,

(5,0 () = { o) HE =G EED

0 else
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Product-M(

Let M = (S, P, sy, AP, L) be a Markov chain and A = (Q, 247, §, gy, F) be a DFA.
MA=(SxQ,P, (s, q,),{acc}, L")
- L'((s,q)) = {acc} ifg € F, L'({s,q)) = 0 else,

- P'((s,a),(s,q')) = {]ép(s’ ) ;flgé =@ L)

Each path fragment m = s¢S182 . .. in M there exists a unique run qpqi1¢o . . . in A.

This works in a similar fashion for different types of automata, after small modifications of the set of
accepting states.
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Automata Types

A very brief overview:

Let M be a Markov chain and A a deterministic automata.

Safety Properties - Something bad should never happen

Let P, . be a safety property and A a DFA for the set of bad prefixes of P, fe- We are interested in

Pr(M,s = Pyfe) =Pr(M® A, (s,qs) ¥ F acc)
=1—-Pr(M® A, (s,qs) = F acc)
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Automata Types

A very brief overview:

Let M be a Markov chain and A a deterministic automata.

DBA-Definable Properties

Let P be a property that can be described by a deterministic Biichi automata .A. We are interested in
Pr(M,s=A)=Pr(M®A, (s,qs) = GF acc)

Recall that the longterm behaviour of M guarantees that we end up in a BSCC 71" and see all states in 7T’
infinitely often.

This means that we only need to solve a reachability problem in M ® A!
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Automata Types

A very brief overview:

Let M be a Markov chain and A a deterministic automata.

DRA-Based Analysis

Let P be an w-regular property. P can be described by a deterministic Rabin automata A.

The acceptance condition of 4 is a set of tuples of atomic propositions {(L1, K1), ..., (Lmn, K)}. For

one i € [1, m] we want to see only finitely many atomic propositions from L; and infinitely many from
K;.
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Automata Types

A very brief overview:

Let M be a Markov chain and A a deterministic automata.

DRA-Based Analysis

Let P be an w-regular property. P can be described by a deterministic Rabin automata A.

The acceptance condition of 4 is a set of tuples of atomic propositions {(L1, K1), ..., (Lmn, K)}. For

one i € [1, m] we want to see only finitely many atomic propositions from L; and infinitely many from
K;.

We can work with BSCCs again!
T is an accepting BSCCif: TN (S X L;) =0 andT N (S x K;) # 0
LetU = UTan accepting BSCC T, then PT(M’ s |: A) — PT(M ® A? <S7 qs> ': F U)
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Example

Knuth-Yao-Die: Simulating a die only using a fair coin.
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dtmc
module die
s : [0..7] init O;
d : [0..6] init 0O;
[] s=0 -> 0.5 : (s'=1) + 0.5 : (s'=2);
[] s=1 -> 0.5 : (s'=3) + 0.5 : (s'=4);
[] s=2 -> 0.5 : (s'=5) + 0.5 : (s'=6);
[] s=3 -> 0.5 : (s'=1) + 0.5 : (s'=7) & (d'=1);
[] s=4 -> 0.5 : (s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);
[] s=5 -> 0.5 : (s'=7) & (d'=4) + 0.5 : (s'=7) & (d'=5);
[] s=6 -> 0.5 : (s'=2) + 0.5 : (s'=7) & (d'=6);
[] s=7 -> 1: (s'=7);
endmodule
label "one" = s=7&d=1;
label "two" = s=78&d=2;

label "three" = s=78&d=3;
label "done" = s=7;

P>=1/6 [ F (s=4 & X (s=78d=3)) 1; P=2 [ (F (X (s=6 & (XX s=5)))) & (F G (d!=5))];



