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or M, start = VF delivered ?
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delivered

But M, start = 3G —delivered ?
or M, start = VF delivered ?

Does not make sense with probabilities! — We need new descriptions for properties.

We have different models.
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Markov Chains

Markov Chain M = (S, P, s, AP, L)

« S aset of states and initial state s,
e P:SxS5—[0,1],s.t.

ZSIGSP(S,S,) =1Vse S

o AP set of atomic states and L : S — 247 alabelling function.
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« Apathm = sps182... € S¥,s.t. P(si,8i41) > 0,Vi >0
« Paths(M) is the set of all paths in M and
o Pathsy;, (M) is the set of all finite path fragments in M.
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ﬁ Model Checking via M

« Explicit CTL model checking allows qualitative model checking.
« We want to do quantitative model checking.
o How likely is the system to fail?

P’r(M7 S ): F SC’I”I“O’I“)
o Whats the probability of my message to arrive after infinitely many tries?

Pr(M, s = F delivered)
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Events and Paths

In order to talk about probabilities of certain paths we need to talk about probability spaces.

« Outcomes={HH,HT,TH,TT}
« tvents={HH},{HT},{TH},{TT}

We could, for example, be interested in the events where H is thrown first={HH}, { HT'}.

What is a possible outcome in a specific Markov Chain M?
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Events and Paths

In order to talk about probabilities of certain paths we need to talk about probability spaces.

« Outcomes={HH,HT,TH,TT}
« tvents={HH},{HT},{TH},{TT}

We could, for example, be interested in the events where H is thrown first={HH}, { HT'}.

What is a possible outcome in a specific Markov Chain M?

— an infinite path ™ € Paths(M)!

e Outcomes = Paths(M)
- Events of interest are 71, Ta, . . . € Pathsy;, (M) that satisfy our property
« Formally we introduce the cylinder set of a prefix:

Cyl(7;) = {mw € Paths(M) | 7; € pref(m)}
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Events and Paths

What is a possible outcome in a specific Markov Chain M?

— an infinite path ™ € Paths(M)!

« Outcomes = Paths(M)
- Events of interest are 71, Ta, . . . € Pathsy;, (M) that satisfy our property
« Formally we introduce the cylinder set of a prefix:

Cyl(m;) = {m € Paths(M) | w; € pref(m)}
e The probability of one event of interest is then:

Pr(Cyl(m;)) = Pr(Cyl(sos1 - - - 8n)) = | lo<icn P(8i) Si41)
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Example from the Blackboard

We are interested in all the finite path fragments 7 that satisfy '"Fg'":
They can be characterized by Ilp, = {7 = s¢(s1)"s2 | n € N}

Via a similar analysis we can see that there is no finite path fragment satisfying F(g', i.e. Illgr, = 0
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Modelling A1 with Code

We need to bake our models into "code” for a model checker.

A well-established language for that is the PRISM-language:
We need to describe the states and transitions of M:

e In order to describe states we need variables:

x : [0..2] init 0;
b : bool init ;

e Transitions are modelled via so-called commands:

[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[] x1=0 & x2>0 & x2<10 -> 0.5:(x1'=1)&(x2'=x2+1) + 0.5:(x1'=2)&(x2'=x2-1);
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Modelling A1 with Code

e Transitions are modelled via so-called commands:

[T x=0 -> 0.8:(x'=0) + 0.2:(x'=1);

A command consists of:

 The guard x=0 describes the behaviour of M when the x equals 0.
« Itis followed by a list of (state-) updates associated with their probabilities.

Note that the updates are indicated via a tick: (x'=0).
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Modelling A1 with Code

dtmc

label "success" = delivered=1;
label "lost" = lost=1;

module msg_delivery
start: [0..1] init 1;
try: [0..1] init O;
lost: [0..1] init O;
delivered: [0..1] init 0;

[] start=1 -> 1: (start'=0) & (try'=1);

[] try=1 -> 0.1: (try'=0) & (lost'=1) +
0.9: (try'=0) & (delivered'=1);

[] lost=1 -> 1: (lost'=0) & (try'=1);

[] delivered=1 -> 1: (delivered'=0) & (start'=1);

\%

endmodule
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Reachability Probabilities

Let B C S be a set of states. We are interested in

Pr(M, sy = FB).



TU

Grazm

Reachability Probabilities

Let B C S be a set of states. We are interested in

Pr(M, sy =FB).

We can characterize all path fragments 7 that satisfy F B with the set
HFB = Pathsfm(./\/l) M (S \ B)*B
All 7 € IIgp are pairwise disjoint, hence:

Pr(M, sy EFB) =Y. Pr(Cyl(%))
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Computing Pr(M, sy = FB)

We want an algorithmic way to compute the reachability probability.

Let x, be the probability to reach B from s and S C S\ B be the set of states from which B is
reachable.

We compute the probability M, s = F B via:

« The probability to reach B in one step: ) . -5 P(s, u)
- and the probability to reach B via a path fragment s ¢ ... u: ), = P(s,t) - z;
o Together

Ty = ZP(S,U) + ZP(s,t) - Ty
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Computing Pr(M, sy = FB)

Forx = (z5) _g we want to compute

x = Ax + b,

where:

e A isthe matrix of Mg and

b = (b;),_z contains the probabilities to reach B in one step.
We rewrite this problem into:

(Id— A)x =b.



Back to the Communication Protocol



Back to the Communication Protocol

Lstart — mtry

1 9
Liry — Exlost + E

Llost — wtry

(1 -1
0 1
0 -1
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Back to the Communication Protocol

Lstart — Ltry (1 -1 0 ] 0
1 9 1 x=(2
Ttry = —~Llost T T~ 0 1 10 X = ( 10 )
10 0 |y 1 1 '
Llost — wtry - =

delivered

Complexity? Improvements? Unique Solution?
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Computing Pr(M, sy = FB)

(Id— A)x=b

might have more than one solution.
We want to find the least solution in [0, 1]5 . For that we consider constrained reachability:
M,sE=CU="B

where C U =" B means that B should be reached within n steps while only passing through states in C.
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Computing Pr(M, sy = FB)

(Id— A)x=b

might have more than one solution.

We want to find the least solution in [0, 1]5 . For that we consider constrained reachability:
M,sE=CU="B
where C' U =" B means that B should be reached within 7 steps while only passing through states in C.

First, some analysis of the problem:
«e BCS_1C{seS|Pr(sECUB)=1},

« S\(CUB)CS_(C{seS|Pr(sECUB)=0} and
¢« Sr =5\ (52U55)
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Computing Pr(M, sy = FB)

We still need to handle S»-states for which we compute the least solution.

x" ) = Ax(™ + b, with x(¥ =0

where

x(" = (25)ses, and wﬁ") =M,s=CU "G4



Computing Pr(M, sy = FB)

We still need to handle S»-states for which we compute the least solution.

x" ) = Ax(™ + b, with x(¥ =0
where
x™ = (z,)ses, and 2V = M, s = CU "5,
This gives us a recipe to compute Pr(M, sq = FB):

« Run a graph-based algorithm to determine S—g, S—1 and S7.
« Compute the probabilities to reach S—; from S>.
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Transient State Probabilities

We will consider a slightly different algorithm:

contains the probability to be in state ¢ after n steps in entry A" (s, t).

We call

the transient state probability for state .
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Transient State Probabilities

Let's consider (03 (t)),cs, the vector of transient state probabilities for the nth step.

We can compute Pr(M, so = F="B) in a modified Markov chain:
MB = (S, S0, IP)B, AP, L)
where:

« Pg(s,t) =P(s,t) ifs ¢ B
« Pp(s,s)=1ifs€ B
« Pp(s,t)=0ifsc Bandt ¢ B

i.e. all s € B become sinks and B cannot be left anymore.
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Transient State Probabilities

« Pp(s,t) =P(s,t) ifs ¢ B
. ]P)B(S, ):].ifSEB
« Pp(s,t)=0ifsc Bandt ¢ B

i.e. all s € B become sinks and B cannot be left anymore.
We then have

Pr(M,s =F=<"B) = Pr(Mg,s =F"B)
and therefore

Pr(M,s=F="B) = Z Oz (t)

teB
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3; } Computing Pr(M, s = F="B) via Transient State
Probabilities

We have the following algorithm to compute Pr(M, s = F="B):

+ ©)1(t) = e;, ie. the unit vector with 1 at the ith position and 0 else.
e« Fork=0upton—1: @ﬁil(t) =A-0(t)
.« Pr(M,s =EF<"B) =Y, 5 025 (t)
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Extra

Let M = (S = {so0, 51, 52,..-89},80 = s0,P,{0,1,2,...,9}, L) be a MC with

1 ... 1

P=_—
10

Furtherlet f : S — [0,1) s.t.
f(m) = f(sos1s2...) =0.L(s1)L(s2) ...
where L(s;) =

f~1:]0,1) — S“ can be defined similarly. Hence we have a bijection between S and [0, 1) and
therefore there must be uncountably infinite many 7 € S¢.



