

Probabilistic Model Checking

Stefan Pranger

19.05.2022

2 Commu

Communication Protocol

But \mathcal{M} , start $\models \exists \mathbf{G} \neg delivered$?

or \mathcal{M} , start $\models \forall \mathbf{F} \ delivered$?

Communication Protocol

But \mathcal{M} , start $\models \exists \mathbf{G} \neg delivered$?

or $\mathcal{M}, start \models \forall \mathbf{F} \ delivered$?

Does not make sense with probabilities! \rightarrow We *need* new descriptions for properties.

We have different models.

Markov Chains

Markov Chain $\mathcal{M} = (S, \mathbb{P}, s_0, AP, L)$

- S a set of states and initial state s_0 ,
- $\mathbb{P}:S imes S o [0,1]$, s.t.

$$\sum_{s'\in S} \mathbb{P}(s,s') = 1 \ orall s \in S$$

- AP set of atomic states and $L:S
ightarrow 2^{AP}$ a labelling function.

liaik 5

Representation

How to represent a MC in code?

G R

Representation

How to represent a MC in code?

$\mathbf{A} =$	0	1	0	0]	
	0	0	$\frac{1}{10}$	$\frac{9}{10}$	
	0	1	0	0	
	1	0	0	0	

ΙΑΙΚ

Representation

How to represent a MC in code?

 $\mathbf{A} = egin{bmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & rac{1}{10} & rac{9}{10} \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \end{bmatrix}$

- A path $\pi = s_0 s_1 s_2 \ldots \in S^\omega$, s.t. $\mathbb{P}(s_i, s_{i+1}) > 0, orall i \geq 0$
- $Paths(\mathcal{M})$ is the set of all paths in \mathcal{M} and
- $Paths_{fin}(\mathcal{M})$ is the set of all finite path fragments in \mathcal{M} .

ΙΑΙΚ Model Checking via ${\cal M}$

8

- Explicit CTL model checking allows *qualitative* model checking.
- We want to do *quantitative* model checking.
 - How *likely* is the system to fail?

$$Pr(\mathcal{M},s\models \mathbf{F} \; s_{error})$$

• Whats the *probability* of my message to arrive after infinitely many tries?

 $Pr(\mathcal{M}, s \models \mathbf{F} \text{ delivered})$

Events and Paths

In order to talk about probabilities of certain paths we need to talk about probability spaces.

- Outcomes = $\{HH, HT, TH, TT\}$
- Events = $\{HH\}, \{HT\}, \{TH\}, \{TT\}\}$

We could, for example, be interested in the events where H is thrown first = $\{HH\}, \{HT\}$.

What is a possible outcome in a specific Markov Chain \mathcal{M} ?

10

Events and Paths

In order to talk about probabilities of certain paths we need to talk about probability spaces.

- Outcomes = $\{HH, HT, TH, TT\}$
- Events = $\{HH\}, \{HT\}, \{TH\}, \{TT\}\}$

We could, for example, be interested in the events where H is thrown first = $\{HH\}, \{HT\}$.

What is a possible outcome in a specific Markov Chain \mathcal{M} ?

- ightarrow an infinite path $\pi \in Paths(\mathcal{M})$!
 - Outcomes = $Paths(\mathcal{M})$
 - Events of interest are $\hat{\pi}_1, \hat{\pi}_2, \ldots \in Paths_{fin}(\mathcal{M})$ that satisfy our property
 - Formally we introduce the *cylinder set* of a prefix:

$$Cyl(\hat{\pi}_i) = \{\pi \in Paths(\mathcal{M}) \mid \hat{\pi}_i \in \operatorname{pref}(\pi)\}$$

Events and Paths

What is a possible outcome in a specific Markov Chain \mathcal{M} ?

ightarrow an infinite path $\pi \in Paths(\mathcal{M})$!

- Outcomes = $Paths(\mathcal{M})$
- Events of interest are $\hat{\pi}_1, \hat{\pi}_2, \ldots \in Paths_{fin}(\mathcal{M})$ that satisfy our property
- Formally we introduce the *cylinder set* of a prefix:

$$Cyl(\hat{\pi}_i) = \{\pi \in Paths(\mathcal{M}) \mid \hat{\pi}_i \in \operatorname{pref}(\pi)\}$$

• The probability of one event of interest is then:

$$Pr(Cyl(\hat{\pi_i})) = Pr(Cyl(s_0s_1\dots s_n)) = \prod_{0 \leq i < n} \mathbb{P}(s_i, s_{i+1})$$

Example from the Blackboard

We are interested in all the finite path fragments $\hat{\pi}$ that satisfy ' $\mathbf{F}g$ ':

They can be characterized by $\Pi_{\mathbf{F}g} = \{ \hat{\pi} = s_0(s_1)^n s_2 \mid n \in \mathbb{N} \}$

Via a similar analysis we can see that there is no finite path fragment satisfying ' $\mathbf{FG}g$ ', i.e. $\Pi_{\mathbf{GF}g} = \emptyset$

IIAIK 13

Modelling ${\mathcal M}$ with Code

We need to *bake* our models into *"code"* for a model checker. A well-established language for that is the **PRISM**-language: We need to describe the states and transitions of \mathcal{M} :

• In order to describe states we need variables:

```
x : [0..2] init 0;
b : bool init false;
```

• Transitions are modelled via so-called *commands*:

[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1); [] x1=0 & x2>0 & x2<10 -> 0.5:(x1'=1)&(x2'=x2+1) + 0.5:(x1'=2)&(x2'=x2-1);

IAIK Modelling \mathcal{M} with Code

• Transitions are modelled via so-called *commands*:

[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);

A command consists of:

14

- The *guard* x=0 describes the behaviour of \mathcal{M} when the x equals 0.
- It is followed by a list of (*state*-) updates associated with their probabilities.

Note that the updates are indicated via a tick: (x'=0).

15 Modelling \mathcal{M} with Code

dtmc

```
label "success" = delivered=1;
label "lost" = lost=1;
```

```
module msg_delivery
```

```
start: [0..1] init 1;
try: [0..1] init 0;
lost: [0..1] init 0;
delivered: [0..1] init 0;
```

endmodule

Reachability Probabilities

Let $B\subseteq S$ be a set of states. We are interested in

 $Pr(\mathcal{M}, s_0 \models \mathbf{F}B).$

Reachability Probabilities

Let $B\subseteq S$ be a set of states. We are interested in

 $Pr(\mathcal{M}, s_0 \models \mathbf{F}B).$

We can characterize all path fragments π that satisfy $\mathbf{F}B$ with the set

 $\Pi_{\mathbf{F}B} = Paths_{fin}(\mathcal{M}) \cap (S \setminus B)^*B$

All $\hat{\pi} \in \Pi_{\mathbf{F}B}$ are pairwise disjoint, hence:

$$Pr(\mathcal{M}, s_0 \models \mathbf{F}B) = \sum_{\hat{\pi} \in \Pi_{\mathbf{F}B}} Pr(Cyl(\hat{\pi}))$$

IAIK 18

Computing $Pr(\mathcal{M}, s_0 \models \mathbf{F}B)$

We want an algorithmic way to compute the reachability probability.

Let x_s be the probability to reach B from s and $\widetilde{S}\subseteq S\setminus B$ be the set of states from which B is reachable.

We compute the probability $\mathcal{M}, s \models \mathbf{F}B$ via:

- The probability to reach B in one step: $\sum_{u\in B}\mathbb{P}(s,u)$
- and the probability to reach B via a path fragment $s \ t \ \ldots \ u$: $\sum_{t\in \widetilde{S}} \mathbb{P}(s,t)\cdot x_t$
- Together

$$x_s = \sum_{u \in B} \mathbb{P}(s,u) + \sum_{t \in \widetilde{S}} \mathbb{P}(s,t) \cdot x_t$$

IIAIK 19

Computing $Pr(\mathcal{M}, s_0 \models \mathbf{F}B)$

For $\mathbf{x} = \left(x_s
ight)_{s\in\widetilde{S}}\,$ we want to compute

$$\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b},$$

where:

- ${f A}$ is the matrix of ${\cal M}_{\widetilde{S}}$ and
- $\mathbf{b}=(b_s)_{s\in\widetilde{S}}$ contains the probabilities to reach B in one step.

We rewrite this problem into:

 $(\mathbf{Id} - \mathbf{A})\mathbf{x} = \mathbf{b}.$

IIAIK 20

Back to the Communication Protocol

Back to the Communication Protocol

Back to the Communication Protocol

Complexity? Improvements? Unique Solution?

IIAIK 23

Computing $Pr(\mathcal{M}, s_0 \models \mathbf{F}B)$

 $(\mathbf{Id}-\mathbf{A})\mathbf{x}=\mathbf{b}$

might have more than one solution.

We want to find the *least solution* in $[0,1]^{\widetilde{S}}$. For that we consider *constrained reachability*:

 $\mathcal{M},s\models C~\mathbf{U}^{\,\leq n}B$

where $C \mathbf{U} \leq n B$ means that B should be reached within n steps while only passing through states in C.

IAIK 24

Computing $Pr(\mathcal{M}, s_0 \models \mathbf{F}B)$

 $(\mathbf{Id} - \mathbf{A})\mathbf{x} = \mathbf{b}$

might have more than one solution.

We want to find the *least solution* in $[0,1]^{\widetilde{S}}$. For that we consider *constrained reachability*:

 $\mathcal{M},s\models C~\mathbf{U}^{\,\leq n}B$

where $C \mathbf{U} \leq nB$ means that B should be reached within n steps while only passing through states in C. First, some analysis of the problem:

First, some analysis of the problem:

•
$$B \subseteq S_{=1} \subseteq \{s \in S \mid Pr(s \models C \mathbf{U} B) = 1\}$$
,
• $S \setminus (C \cup B) \subseteq S_{=0} \subseteq \{s \in S \mid Pr(s \models C \mathbf{U} B) = 0\}$ and

$$\bullet \ S_? = S \setminus (S_{=1} \cup S_{=0})$$

IIAIK 25

Computing $Pr(\mathcal{M}, s_0 \models \mathbf{F}B)$

We still need to handle $S_?$ -states for which we compute the least solution.

$$\mathbf{x}^{(n+1)} = \mathbf{A}\mathbf{x}^{(n)} + \mathbf{b}, ext{with } \mathbf{x}^{(0)} = \mathbf{0}$$

where

$$\mathbf{x}^{(n)} = (x_s)_{s \in S_?} ext{ and } x^{(n)}_s = \mathcal{M}, s \models C extbf{U} ext{ }^{\leq n} S_{=2}$$

IAIK 26

Computing $Pr(\mathcal{M}, s_0 \models \mathbf{F}B)$

We still need to handle $S_?$ -states for which we compute the least solution.

$$\mathbf{x}^{(n+1)} = \mathbf{A}\mathbf{x}^{(n)} + \mathbf{b}, ext{with } \mathbf{x}^{(0)} = \mathbf{0}$$

where

$$\mathbf{x}^{(n)} = (x_s)_{s \in S_?} ext{ and } x^{(n)}_s = \mathcal{M}, s \models C extbf{ U} {}^{\leq n}S_{=1}$$

This gives us a recipe to compute $Pr(\mathcal{M}, s_0 \models \mathbf{F}B)$:

- Run a graph-based algorithm to determine $S_{=0}$, $S_{=1}$ and $S_{?}$.
- Compute the probabilities to reach $S_{=1}$ from $S_{?}$.

IAIK 28

Transient State Probabilities

We will consider a slightly different algorithm:

 $\mathbf{A}^n = \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdots \mathbf{A}$

contains the probability to be in state t after n steps in entry $\mathbf{A}^n(s,t)$.

We call

$$\Theta_n^\mathcal{M}(t) = \sum_{s \in S} \mathbf{A}^n(s,t)$$

the *transient state probability* for state *t*.

1AIK 29

Transient State Probabilities

Let's consider $(\Theta^{\mathcal{M}}_n(t))_{s\in S}$, the vector of transient state probabilities for the nth step.

We can compute $Pr(\mathcal{M}, s_0 \models \mathbf{F}^{\leq n}B)$ in a modified Markov chain:

$$\mathcal{M}_B = (S, s_0, \mathbb{P}_B, AP, L)$$

where:

•
$$\mathbb{P}_B(s,t) = \mathbb{P}(s,t)$$
 if $s
ot\in B$

- $\bullet \; \mathbb{P}_B^-(s,s) = 1 ext{ if } s \in B$
- $\bullet \ \mathbb{P}_B^{\Sigma(s,t)} = 0 \ \text{if} \ s \in B \ \text{and} \ t \notin B$

i.e. all $s \in B$ become sinks and B cannot be left anymore.

IAIK 30

Transient State Probabilities

- $\mathbb{P}_B(s,t)=\mathbb{P}(s,t)$ if $s
 ot\in B$
- $\mathbb{P}_B(s,s)=1$ if $s\in B$
- $\bullet \ \mathbb{P}_B(s,t) = 0 \text{ if } s \in B \text{ and } t \notin B$

i.e. all $s \in B$ become sinks and B cannot be left anymore.

We then have

$$Pr(\mathcal{M},s\models \mathbf{F}^{\leq n}B)=Pr(\mathcal{M}_B,s\models \mathbf{F}^{=n}B)$$

and therefore

$$Pr(\mathcal{M},s\models \mathbf{F}^{\leq n}B)=\sum_{t\in B}\Theta_n^{\mathcal{M}_B}(t).$$

31

Computing $Pr(\mathcal{M},s\models \mathbf{F}^{\leq n}B)$ via Transient State Probabilities

We have the following algorithm to compute $Pr(\mathcal{M},s\models \mathbf{F}^{\leq n}B)$:

- $\Theta_0^{\mathcal{M}}(t) = \mathbf{e}_i$, i.e. the unit vector with 1 at the *i*th position and 0 else.
- For k=0 up to $n-1: \Theta_{k+1}^{\mathcal{M}}(t)= \mathbf{A} \cdot \Theta_{k}^{\mathcal{M}}(t)$
- $Pr(\mathcal{M},s\models \mathbf{F}^{\leq n}B)=\sum_{t\in B}\Theta_n^{\mathcal{M}_B}(t)$

32 Extra

Let $\mathcal{M} = (S = \{s_0, s_1, s_2, \dots s_9\}, s_0 = s_0, \mathbb{P}, \{0, 1, 2, \dots, 9\}, L)$ be a MC with $\mathbb{P} = \frac{1}{10} \begin{bmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{bmatrix}$

Further let $f:S^\omega
ightarrow [0,1)$ s.t.

$$f(\pi)=f(s_0s_1s_2\ldots)=0.L(s_1)L(s_2)\ldots$$

where $L(s_i) = i$

 $f^{-1}:[0,1) o S^\omega$ can be defined similarly. Hence we have a bijection between S^ω and [0,1) and therefore there must be uncountably infinite many $\pi\in S^\omega$.