

Probabilistic Model Checking

Stefan Pranger

19. 05. 2022

HAIK 2

Communication Protocol

But $\mathcal{M}, start \models \exists G \ \neg delivered?$

 $\mathbf{or} \mathcal{M}, start \models \forall \mathbf{F} \ defined$?

Communication Protocol

But $\mathcal{M}, start \models \exists G \ \neg delivered?$

 $\mathbf{or} \mathcal{M}, start \models \forall \mathbf{F} \ defined$?

Does not make sense with probabilities! \rightarrow We *need* new descriptions for properties.

We *have* different models.

Markov Chains

 $Markov Chain \mathcal{M} = (S, \mathbb{P}, s_0, AP, L)$

- \overline{S} a set of states and initial state s_0 ,
- $\mathbb{P}: S \times S \rightarrow [0,1]$, s.t.

$$
\sum\nolimits_{s' \in S} \mathbb{P}(s, s') = 1 \ \forall s \in S
$$

 AP set of atomic states and $L : S \rightarrow 2^{AP} \,$ a labelling function.

HAIK 5

Representation

How to represent a MC in code?

HAIK Representation

How to represent a MC in code?

$$
\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{10} & \frac{9}{10} \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}
$$

 $\overline{0}$

 $\overline{0}$

9 10 $\overline{0}$

 \mathbf{L}

 \blacksquare \blacksquare

 \mathbf{L}

 $\overline{0}$

1 $\overline{10}$ $\overline{0}$

 $\overline{0}$

IAIK

Representation

How to represent a MC in code?

- A path $\pi=s_0s_1s_2\ldots\in S^\omega$, s.t. $\mathbb{P}(s_i,s_{i+1})>0, \forall i\geq 0$
- $Paths(\mathcal{M})$ is the set of all paths in $\mathcal{\dot{M}}$ and
- $Paths_{fin}(\mathcal{M})$ is the set of all finite path fragments in $\mathcal{M}.$

<u>iaik</u> Model Checking via $\mathcal M$

8

- Explicit CTL model checking allows *qualitative* model checking.
- We want to do *quantitative* model checking.
	- How *likely* is the system to fail?

$$
\mathit{Pr}(\mathcal{M}, s \models \mathbf{F} \; s_{error})
$$

Whats the *probability* of my message to arrive after infinitely many tries?

 $Pr(\mathcal{M}, s \models \mathbf{F}$ delivered)

Events and Paths

In order to talk about probabilities of certain paths we need to talk about probability spaces.

- Outcomes = $\{HH,HT,TH,TT\}$
- Events = $\{H\overline{H}\},\{HT\},\{TH\},\{TT\}$

We could, for example, be interested in the events where H is thrown first = $\{HH\}, \{HT\}.$

What is a possible outcome in a specific Markov Chain $\mathcal{M}?$

іаік **10**

Events and Paths

In order to talk about probabilities of certain paths we need to talk about probability spaces.

- Outcomes = $\{HH,HT,TH,TT\}$
- Events = $\{H\overline{H}\},\{HT\},\{TH\},\{TT\}$

We could, for example, be interested in the events where H is thrown first = $\{HH\}, \{HT\}.$

What is a possible outcome in a specific Markov Chain $\mathcal{M}?$

- \rightarrow an infinite path $\pi \in Paths(\mathcal{M})!$
	- Outcomes = $Paths(\mathcal{M})$
	- Events *of interest* are $\hat{\pi}_1^{'}, \hat{\pi}_2, \ldots \in Paths_{fin}(\mathcal{M})$ *that satisfy our property*
	- Formally we introduce the *cylinder set* of a prefix:

$$
Cyl(\hat{\pi}_i) = \{\pi \in Paths(\mathcal{M}) \mid \hat{\pi}_i \in \mathrm{pref}(\pi)\}
$$

Events and Paths

What is a possible outcome in a specific Markov Chain $\mathcal{M}?$

 \rightarrow an infinite path $\pi \in Paths(\mathcal{M})!$

- Outcomes = $Paths(\mathcal{M})$
- Events of interest are $\hat{\pi}_1^{'}, \hat{\pi}_2, \ldots \in Paths_{fin}(\mathcal{M})$ that satisfy our property
- Formally we introduce the *cylinder set* of a prefix:

$$
Cyl(\hat{\pi}_i) = \{\pi \in Paths(\mathcal{M}) \mid \hat{\pi}_i \in \mathrm{pref}(\pi)\}
$$

The probability of one event of interest is then:

$$
Pr(Cyl(\hat{\pi_i})) = Pr(Cyl(s_0s_1\dots s_n)) = \textstyle \prod_{0 \leq i < n} \mathbb{P}(s_i,s_{i+1})
$$

Example from the Blackboard

We are interested in all the finite path fragments $\hat{\pi}$ that satisfy ' ${\bf F}g'$:

They can be characterized by $\Pi_{\mathbf{F}g} = \{ \hat{\pi} = s_0(s_1)^n s_2 \mid n \in \mathbb{N} \}$

Via a similar analysis we can see that there is no finite path fragment satisfying ' $\mathbf{FG}g$ ', i.e. $\Pi_{\mathbf{GF}g}=\emptyset$

Modelling $\mathcal M$ with Code

We need to *bake* our models into *"code"* for a model checker. A well-established language for that is the **PRISM**-language: We need to describe the states and transitions of ${\cal M}$:

• In order to describe states we need variables:

```
x : [0..2] init 0;
b : bool init false;
```
Transitions are modelled via so-called *commands*:

 \lceil $\begin{array}{l} \times=0 \rightarrow 0.8$: $(x'=0) + 0.2$: $(x'=1)$; \lceil x1=0 & x2>0 & x2<10 -> 0.5:(x1'=1)&(x2'=x2+1) + 0.5:(x1'=2)&(x2'=x2-1);

<u>IAIK</u> Modelling $\mathcal M$ with Code

Transitions are modelled via so-called *commands*:

 \lceil \lceil \times =0 \cdot > 0.8:(x'=0) + 0.2:(x'=1);

A command consists of:

14

- The $guard$ x=0 describes the behaviour of ${\cal M}$ when the x equals 0.1
- It is followed by a list of (*state*-) updates associated with their probabilities.

Note that the updates are indicated via a tick: (x'=0).

IIAIK Modelling $\mathcal M$ with Code **endmodule 15**
 15
 dtmc
 label "sure label "lo:
 module ms;

start

try:

lost:

delive

[] start

[] start

[] start

[] try

[] in [] lo:

[] de'

dtmc

```
label "success" = delivered=1;
label "lost" = lost=1;
```

```
module msg_delivery
```

```
 start: [0..1] init 1;
 try: [0..1] init 0;
 lost: [0..1] init 0;
 delivered: [0..1] init 0;
```

```
[] start=1 -> 1: (start'=0) & (try'=1);
\begin{bmatrix} 1 & \text{try=1} \\ 0.1 & \text{try=0} \end{bmatrix} & \begin{bmatrix} \text{lost'}=1 \\ \text{iv} \end{bmatrix} +
                           0.9: (try'=0) & (delivered'=1);
\lceil lost=1 -> 1: (lost'=0) & (try'=1);
\lceil delivered=1 -> 1: (delivered'=0) & (start'=1);
```


Reachability Probabilities

Let $B\subseteq S$ be a set of states. We are interested in

 $Pr(\mathcal{M}, s_0 \models \mathbf{F}B).$

Reachability Probabilities

Let $B\subseteq S$ be a set of states. We are interested in

 $Pr(\mathcal{M}, s_0 \models \mathbf{F}B).$

We can characterize all path fragments π that satisfy $\mathbf{F}B$ with the set

 $\Pi_{\mathbf{F}B} = Paths_{fin}(\mathcal{M}) \cap (S \setminus B)^*B$

All $\hat{\pi} \in \Pi_{\mathbf{F}B}$ are pairwise disjoint, hence:

$$
Pr(\mathcal{M}, s_0\models \mathbf{F}B)=\textstyle\sum_{\hat{\pi}\in \Pi_{\mathbf{F}B}}Pr(Cyl(\hat{\pi}))
$$

Computing $Pr(\mathcal{M}, s_0 \models \mathbf{F}B)$

We want an algorithmic way to compute the reachability probability.

Let x_s be the probability to reach B from s and $\widetilde S \subseteq S \setminus B$ be the set of states from which B is reachable.

We compute the probability $\mathcal{M}, s \models \mathbf{F}B$ via:

- The probability to reach B in one step: $\sum_{u\in B}\mathbb{P}(s,u)$
- and the probability to reach B via a path fragment $s \; t \; \ldots \; u\! : \sum_{t \in \widetilde S} \mathbb{P}(s,t) \cdot x_t$
- Together

$$
x_s = \sum_{u \in B} \mathbb{P}(s, u) + \sum_{t \in \widetilde{S}} \mathbb{P}(s, t) \cdot x_t
$$

IIAIK 19

$$
\textsf{Computing}\ Pr(\mathcal{M},s_0\models\mathbf{F}B)
$$

For $\mathbf{x} = \left(x_s\right)_{s \in \widetilde{S}}$ we want to compute

$$
\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b},
$$

where:

- ${\bf A}$ is the matrix of ${\cal M}_{\widetilde S}$ and
- $\mathbf{b} = \left(b_s \right)_{s \in \widetilde{S}}$ contains the probabilities to reach B in one step.

We rewrite this problem into:

 $(\mathbf{Id} - \mathbf{A})\mathbf{x} = \mathbf{b}.$

HAIK 20

Back to the Communication Protocol

HAIK Back to the Communication Protocol **21**

$$
x_{start} = x_{try}
$$

\n
$$
x_{try} = \frac{1}{10}x_{lost} + \frac{9}{10}
$$

\n
$$
x_{lost} = x_{try}
$$

\n
$$
\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -\frac{1}{10} \\ 0 & -1 & 1 \end{bmatrix} \cdot \mathbf{x} = \begin{pmatrix} 0 \\ \frac{9}{10} \\ 0 \end{pmatrix}
$$

 \cdot $\mathbf{x} = \left(\begin{array}{c} 9 \ 10 \end{array} \right)$.

 $\overline{0}$

9 $\overline{10}$ $\overline{0}$

−1

 $\overline{0}$

 \mathbf{L}

 \mathbf{L}

 \mathbf{L}

 $-\frac{1}{10}$ 10

1

1

−1

IAIK Back to the Communication Protocol **22** $= x_{try}$ 1 x_{start} \perp 1 9 $\overline{0}$ start $=\frac{1}{-x_{lost}} +$ \vert x_{try} $\frac{1}{10}x_{lost}$ $\overline{10}$ \mathbf{L} $\overline{0}$

 $lost$

 $\frac{1}{10}$

 try

 $\frac{9}{10}$

(delivered

Complexity? Improvements? Unique Solution?

 $x_{lost} = x_{try}$

Computing $Pr(\mathcal{M}, s_0 \models \mathbf{F}B)$

 $(\mathbf{Id} - \mathbf{A})\mathbf{x} = \mathbf{b}$

might have more than one solution.

We want to find the *least solution* in $[0,1]^{\widetilde{S}}$. For that we consider *constrained reachability*:

 $\mathcal{M},s\models C\, \mathbf{U}^{\,\leq n}B$

where C $\mathbf{U} \leq^n B$ means that B should be reached within n steps while only passing through states in $C.$

Computing $Pr(\mathcal{M}, s_0 \models \mathbf{F}B)$

 $(\mathbf{Id} - \mathbf{A})\mathbf{x} = \mathbf{b}$

might have more than one solution.

We want to find the *least solution* in $[0,1]^{\widetilde{S}}$. For that we consider *constrained reachability*:

 $\mathcal{M},s\models C\, \mathbf{U}^{\,\leq n}B$

where C $\mathbf{U} \leq^n B$ means that B should be reached within n steps while only passing through states in $C.$ First, some analysis of the problem:

\n- \n
$$
B \subseteq S_{=1} \subseteq \{ s \in S \mid Pr(s \models C \mathbf{U} \mid B) = 1 \}
$$
\n
\n- \n
$$
S \setminus (C \cup B) \subseteq S_{=0} \subseteq \{ s \in S \mid Pr(s \models C \mathbf{U} \mid B) = 0 \}
$$
\n and\n
\n

$$
\bullet \ \ S_? \stackrel{\smallsmile}{=} S \setminus (\acute{S}_{=1} \cup \check{S}_{=0})
$$

HAIK 25

Computing $Pr(\mathcal{M}, s_0 \models \mathbf{F}B)$

We still need to handle $S_?$ -states for which we compute the least solution.

$$
\mathbf{x}^{(n+1)} = \mathbf{A}\mathbf{x}^{(n)} + \mathbf{b}, \text{with } \mathbf{x}^{(0)} = \mathbf{0}
$$

where

$$
\mathbf{x}^{(n)}=(x_s)_{s\in S_?}\text{ and }x_s^{(n)}=\mathcal{M},s\models C\ \mathbf{U}^{\ \leq n}S_{=1}
$$

Computing $Pr(\mathcal{M}, s_0 \models \mathbf{F}B)$

We still need to handle $S_?$ -states for which we compute the least solution.

$$
\mathbf{x}^{(n+1)} = \mathbf{A}\mathbf{x}^{(n)} + \mathbf{b}, \text{with } \mathbf{x}^{(0)} = \mathbf{0}
$$

where

$$
\mathbf{x}^{(n)}=(x_s)_{s\in S_?}\text{ and }x_s^{(n)}=\mathcal{M},s\models C\ \mathbf{U}^{\ \leq n}S_{=1}
$$

This gives us a recipe to compute $Pr(\mathcal{M}, s_0 \models \mathbf{F}B)$:

- Run a graph-based algorithm to determine $S_{=0}$, $S_{=1}$ and $S_?$.
- Compute the probabilities to reach $S_{=1}$ from $\ddot{S}_{?}$.

<u>IAIK</u> **28**

Transient State Probabilities

We will consider a slightly different algorithm:

 $A^n = A \cdot A \cdot A \cdot A \cdot \cdots \cdot A$

contains the probability to be in state t after n steps in entry $\mathbf{A}^n(s,t).$

We call

$$
\Theta_n^{\mathcal{M}}(t)=\sum_{s\in S} \mathbf{A}^n(s,t)
$$

the *transient state probability* for state t .

Transient State Probabilities

Let's consider $(\Theta_n^{\cal M}(t))_{s\in S}$, the vector of transient state probabilities for the n th step.

We can compute $Pr(\mathcal{M}, s_0 \models \mathbf{F}^{\le n}B)$ in a modified Markov chain:

$$
\mathcal{M}_B = (S, s_0, \mathbb{P}_B, AP, L)
$$

where:

$$
\quad \text{\rm\tiny \bullet } \mathbb{P}_B(s,t)=\mathbb{P}(s,t) \text{\, if } s \notin B
$$

- $\mathbb{P}_B(s,s) = 1 \text{ if } s \in B$
- $\mathbb{P}^{\widetilde{}}_B(s,t)=0\text{ if }s\in B\text{ and }t\notin B.$

i.e. all $s \in B$ become sinks and B cannot be left anymore.

<u>IAIK</u> **30**

Transient State Probabilities

- $\mathbb{P}_B(s,t)=\mathbb{P}(s,t) \text{ if } s\notin B$
- $\mathbb{P}^{-}_{B}(s,s) = 1 \text{ if } s \in B$
- $\mathbb{P}^{\widetilde{E}}_{B}(s,t)=0\,\,\text{if}\,s\in B\text{ and }t\notin B\,.$

i.e. all $s \in B$ become sinks and B cannot be left anymore.

We then have

$$
Pr(\mathcal{M},s\models\mathbf{F}^{\leq n}B)=Pr(\mathcal{M}_B,s\models\mathbf{F}^{=n}B)
$$

and therefore

$$
Pr(\mathcal{M},s\models\mathbf{F}^{\leq n}B)=\sum_{t\in B}\Theta_{n}^{\mathcal{M}_{B}}(t)
$$

іаік **31**

Computing $Pr(\mathcal{M},s\models \mathbf{F}^{\le n}B)$ via Transient State Probabilities

We have the following algorithm to compute $Pr(\mathcal{M},s\models \mathbf{F}^{\le n}B)$:

- $\Theta_0^{\cal M}(t) = {\bf e}_i$, i.e. the unit vector with 1 at the i th position and 0 else.
- $\text{For } k=0 \text{ up to } n-1: \, \Theta_{k+1}^{\mathcal{M}}(t) = \mathbf{A} \cdot \Theta_{k}^{\mathcal{M}}(t) \, ,$
- $Pr(\mathcal{M},s\models\mathbf{F}^{\le n}B)=\sum_{t\in B}^{\cdots}\Theta_{n}^{\mathcal{M}_{B}}(t)$

наік **32**

Extra

Let $\mathcal{M} = (S = \{s_0, s_1, s_2, \ldots s_9\}, s_0 = s_0, \mathbb{P}, \{0, 1, 2, \ldots, 9\}, L)$ be a MC with $\mathbb{P} =$ 1 10 \perp \perp \perp \perp 1 $\ddot{\cdot}$ 1 … $\ddot{}$ … 1 $\ddot{\cdot}$ 1 \mathbf{L} \mathbf{I} \mathbf{L} \mathbf{L}

Further let $f : S^\omega \to [0,1)$ s.t.

$$
f(\pi)=f(s_0s_1s_2\ldots)=0.L(s_1)L(s_2)\ldots
$$

where $L(s_i)=i$

 $f^{-1}:[0,1)\to S^\omega$ can be defined similarly. Hence we have a bijection between S^ω and $[0,1)$ and therefore there must be uncountably infinite many $\pi \in S^\omega$.