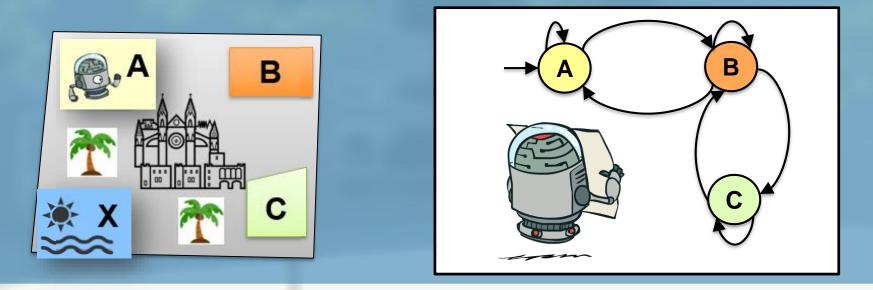


Graz University of Technology Institute for Applied Information Processing and Communications

Automata and LTL Model Checking Part-3 Filip Cano Cordoba



Model Checking SS22

June 9th 2022

Outline

Finite automata on finite words

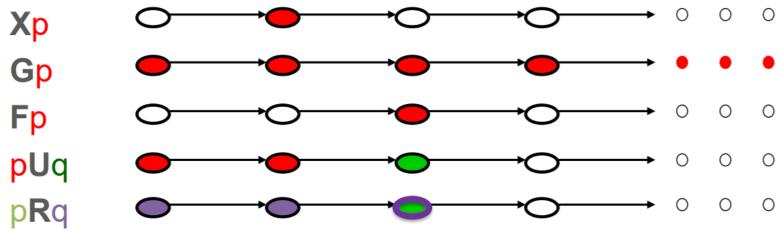
ΙΔΙΚ

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Translation of LTL to Büchi automata

Translation of LTL to Büchi automata

- Given an LTL formula φ , construct a generalized Büchi automaton \mathcal{A}_{φ}
- \mathcal{A}_{φ} accepts exactly all the traces that satisfy φ

Recall LTL Semantics



Translation of LTL to Büchi automata

Given an LTL formula φ , construct a generalized Büchi automaton \mathcal{A}_{φ}

- **1.** Translate φ into generalized Büchi Automaton
- 2. Translate generalized Büchi to Büchi automaton

Rewriting

- Algorithm only handles
 - $\neg, \land, \lor, X, U, (R)$

ΙΙΑΙΚ

- Use rewriting Rules $\neg G\varphi = F \neg \varphi$
 - $F\varphi = true U\varphi$
 - $G\varphi = \neg F \neg \varphi = false R \varphi$
 - $\neg(\varphi R\psi) = \neg\varphi U\neg\psi$

 Each state of the automata is labelled with a set of properties/sub-formulas that should be satisfied on paths starting at that state

Closure of an LTL formula $\varphi - cl(\varphi)$

- cl(φ)
 - ... subformulas of φ and their negation
 - ... subsets of $cl(\varphi)$ define state space of \mathcal{A}_{φ}

Closure of an LTL formula $\varphi - cl(\varphi)$

- $\mathsf{cl}(\varphi)$
 - ... subformulas of φ and their negation
- Formally:
 - $\varphi \in cl(\varphi)$.
 - If $\varphi_1 \in cl(\varphi)$, then $\neg \varphi_1 \in cl(\varphi)$.
 - If $\neg \varphi_1 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$.
 - If $\varphi_1 \lor \varphi_2 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$ and $\varphi_2 \in cl(\varphi)$.
 - If $X \varphi_1 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$.
 - If $\varphi_1 U \varphi_2 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$ and $\varphi_2 \in cl(\varphi)$.

Closure of an LTL formula $\varphi - cl(\varphi)$

- cl(φ)
 - ... subformulas of φ and their negation
- ToDo
 - $\varphi \coloneqq (\neg p U ((Xq) \lor r))$
 - Compute $cl(\varphi)$

Closure of an LTL formula φ

- cl(φ)
 - ... subformulas of φ and their negation

•
$$\varphi \coloneqq (\neg p U ((Xq) \lor r))$$

• $cl((\neg pU((Xq) \lor r))) =$
 $\{ (\neg pU((Xq) \lor r)), \neg (\neg pU((Xq) \lor r)), \neg p, p, ((Xq) \lor r), \neg ((Xq) \lor r), (Xq), \neg q, \gamma, \gamma r) \}$

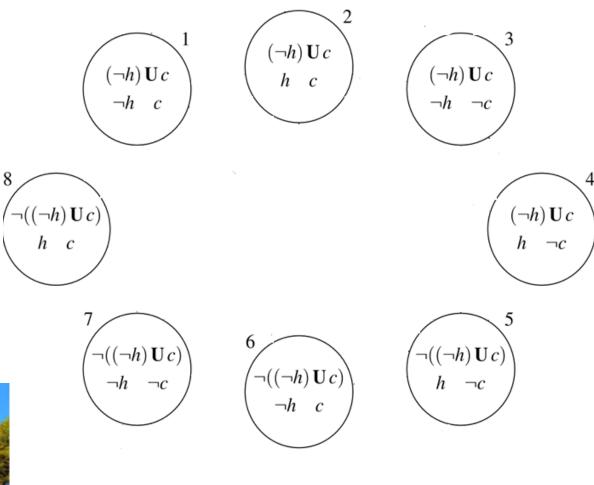
Good sets in $cl(\varphi)$

- $S \subseteq cl(\varphi)$ is **good** in $cl(\varphi)$ if S is a maximal set of formulas in $cl(\varphi)$ that is **consistent**:
- 1. For all $\varphi_1 \in cl(\varphi)$: $\varphi_1 \in S \Leftrightarrow \neg \varphi_1 \notin S$, 2. For all $\varphi_1 \lor \varphi_2 \in cl(\varphi)$: $\varphi_1 \lor \varphi_2 \in S \Leftrightarrow$ at least one of φ_1, φ_2 is in *S*.

The set of all **good sets** of $cl(\varphi)$ defines the state space of \mathcal{A}_{φ}

Institute for Applied Information Processing and Communications 09.06.2022

ΙΔΙΚ



- $\mathcal{A}_{\varphi} = (\mathcal{P}(\mathsf{AP}), \mathbf{Q}, \mathbf{\Delta}, \mathbf{Q}^0, \mathbf{F})$
- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi))$ is the set of all the good sets in $cl(\varphi)$.

Each state of \mathcal{A}_{φ} is **labelled** with a set of properties that should be satisfied on all paths starting at that state

 $\mathcal{A}_{\varphi} = (\mathcal{P}(\mathsf{AP}), \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$

- For q, q' \in Q and $\sigma \subseteq$ AP, $(q,\sigma,q') \in \Delta$ if:
 - 1. $\sigma = q' \cap AP$
 - 2. $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
 - 3. $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow either \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$

$$\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$$

Each state of \mathcal{A}_{φ} is **labelled** with a set of properties that should be satisfied on all paths starting at that state

 $\mathcal{A}_{\varphi} = (\mathcal{P}(\mathsf{AP}), \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$

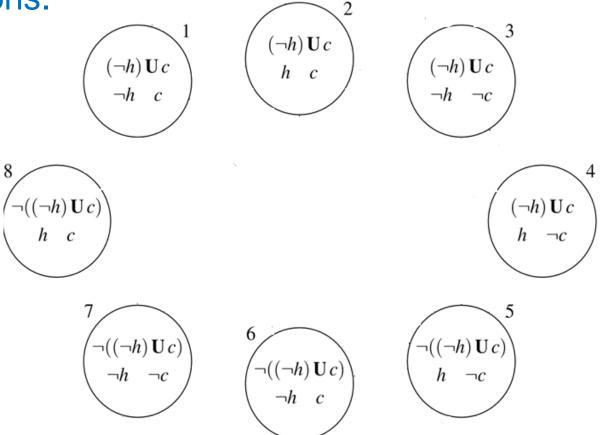
- For q, q' \in Q and $\sigma \subseteq$ AP, $(q,\sigma,q') \in \Delta$ if:
 - 1. $\sigma = q' \cap AP$
 - 2. $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
 - 3. $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$ 4. $\neg(\varphi_1 \cup \varphi_2) \in q \Leftrightarrow \text{ either } \neg \varphi_2 \in q \text{ and either}$ $\neg \varphi_1 \in q \text{ or } \neg (\varphi_1 \cup \varphi_2) \in q'$

$$\neg(\varphi_1 U \varphi_2) = \neg \varphi_1 R \neg \varphi_2$$

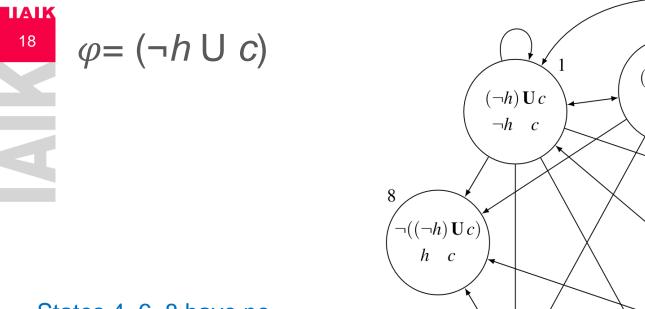
$$\varphi_1 R \varphi_2 \equiv \varphi_2 \land (\varphi_1 \lor X(\varphi_1 R \varphi_2))$$

$$\varphi = (\neg h \cup c)$$

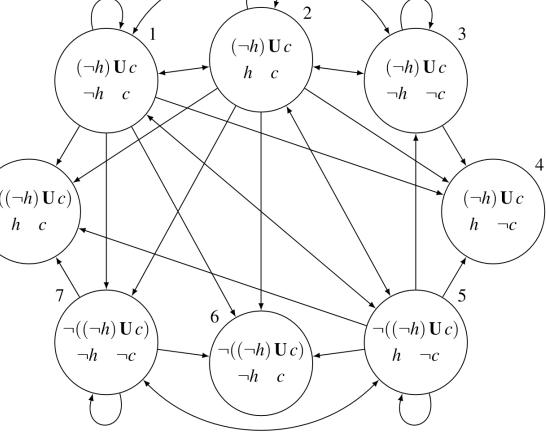
Draw the tranistions.



SCOS Secure & Correct Systems



States 4, 6, 8 have no outgoing edges



$\boldsymbol{\mathcal{A}}_{\boldsymbol{\varphi}} = (\boldsymbol{\mathcal{P}}(\mathsf{AP}), \mathbf{Q}, \boldsymbol{\Delta}, \mathbf{Q}^0, \mathbf{F})$

What are the initial states?

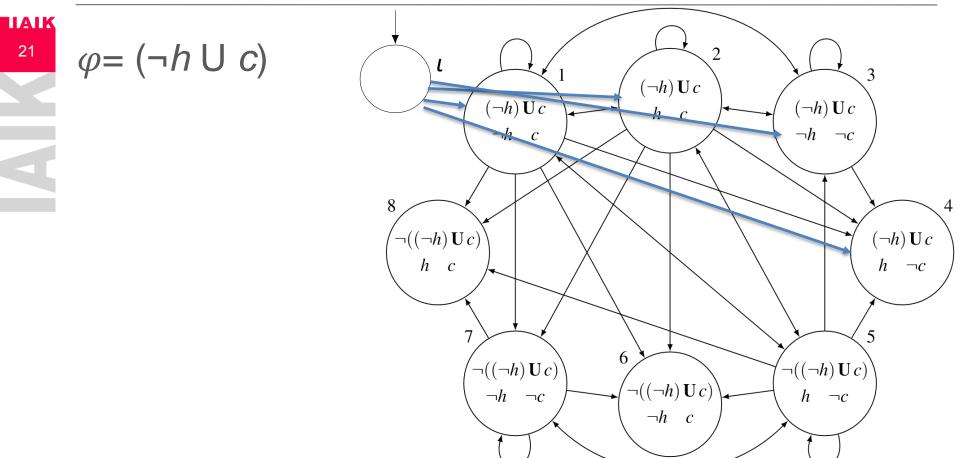
Each state of \mathcal{A}_{φ} is **labelled** with a set of properties that should be satisfied on all paths starting at that state

 $\boldsymbol{\mathcal{A}}_{\boldsymbol{\varphi}} = (\boldsymbol{\mathcal{P}}(\mathsf{AP}), \mathbf{Q}, \boldsymbol{\Delta}, \{\boldsymbol{\iota}\}, \mathbf{F})$

MALLORCA

- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi)) \cup \{\iota\}$ is the set of all the good sets in $cl(\varphi) \cup \{\iota\}$.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$

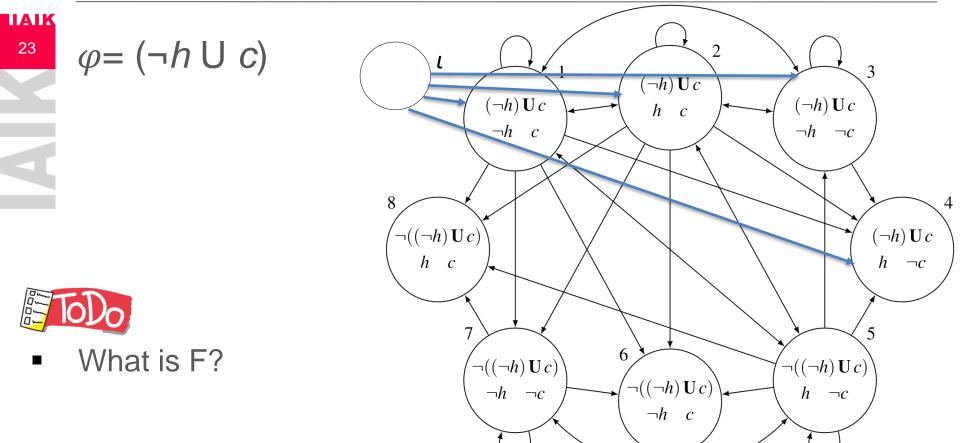
Each state of \mathcal{A}_{φ} is **labelled** with a set of properties that should be satisfied on all paths starting at that state

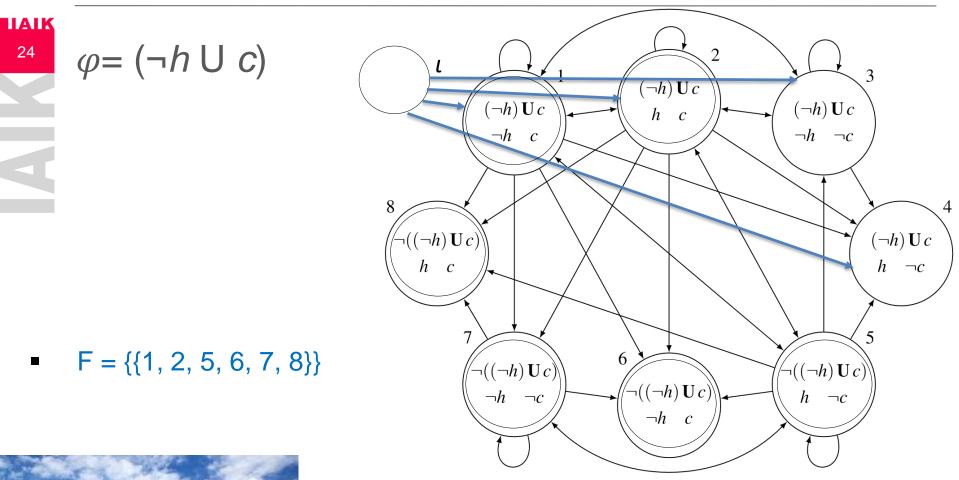


$\boldsymbol{\mathcal{A}}_{\boldsymbol{\varphi}} = (\boldsymbol{\mathcal{P}}(\mathsf{AP}), \mathbf{Q}, \boldsymbol{\Delta}, \{\boldsymbol{\iota}\}, \mathbf{F})$

ΙΔΙΚ

- Q ⊆ 𝒫 (cl(φ)) ∪ {ι} is the set of all the good sets in cl(φ) ∪ {ι}.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set
 - $F_{\varphi_1} \bigcup \varphi_2 = \{q \in \mathbf{Q} \mid \varphi \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q\}.$





$\boldsymbol{\mathcal{A}}_{\boldsymbol{\varphi}} = (\boldsymbol{\mathcal{P}}(\mathsf{AP}), \mathbf{Q}, \boldsymbol{\Delta}, \{\boldsymbol{\iota}\}, \mathbf{F})$

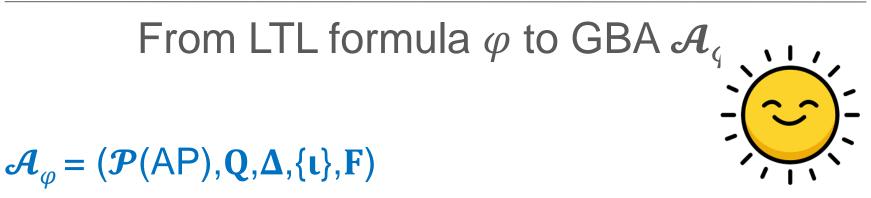
- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi)) \cup {\mathbf{l}}$ is the set of all the good sets in $cl(\varphi) \cup {\mathbf{l}}$.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set
 - $F_{\varphi_1} \cup \varphi_2 = \{q \in \mathbf{Q} \mid \varphi \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q\}.$

ToDo

ΙΔΙΚ

25

What is the complexity?



- Q ⊆ 𝒫 (cl(φ)) ∪ {ι} is the set of all the good sets in cl(φ) ∪ {ι}.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set
 - $F_{\varphi_1} \bigcup \varphi_2 = \{q \in \mathbf{Q} \mid \varphi \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q\}.$
- What is the complexity?

ΙΔΙΚ

26

• \mathcal{A}_{φ} is **always exponential** in the size of φ .

Algorithm in the Book (7.9)

$\boldsymbol{\mathcal{A}}_{\boldsymbol{\varphi}} = (\mathsf{P}(\mathsf{AP}), \mathbf{Q}, \boldsymbol{\Delta}, \mathbf{Q}^0, \mathbf{F})$

ΙΑΙΚ

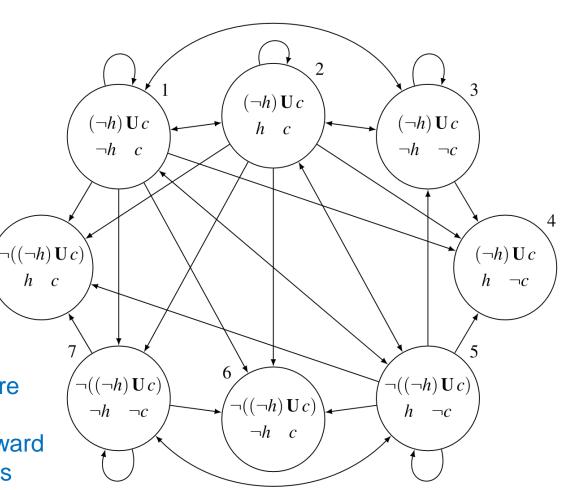
- $\mathbf{Q} \subseteq \mathsf{P}(cl(\varphi))$ is the set of all the good sets in $cl(\varphi)$.
- For q, q' \in Q and $\sigma \subseteq$ AP, $(q,\sigma,q') \in \Delta$ if:
 - 1. $\sigma = q \cap AP \rightarrow Push labels forward$
 - **2. X** $\varphi_1 \in \mathbf{q} \Leftrightarrow \varphi_1 \in \mathbf{q}'$,
 - **3.** $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{either } \varphi_2 \in q \text{ or both } \varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$
- \mathbf{Q}^0 is the set of all states $\mathbf{q} \in \mathbf{Q}$ for which $\varphi \in \mathbf{q}$.
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set $F_{\varphi_1} \cup \varphi_2 = \{q \in \mathbf{Q} \mid \varphi \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q\}.$

- Initial States: {1, 2, 3, 4}
- $F = \{\{1, 2, 5, 6, 7, 8\}\}.$

Homework:

Explain why both algorithm are correct.

Why does pushing labels forward and pushing labels backwards both work in this case?



Efficient translation of LTL to Büchi [Gerth, Peled, Vardi and Wolper]

- \mathcal{A}_{φ} does not have to be always exponential in the size of φ (but sometimes it is).
- The idea: each state includes only subformulas that are required to be true for this state.

Example:
$$\varphi = X X p$$

Subformulas of φ : {X X p, X p, p}
number of subsets = $2^3 = 8$

But: in state 1 we care only about XXp, not about Xp or p in state 2 we only care about Xp; in state 3 we only care about p ⇒ we only need three states!

Translation of LTL to Büchi automata

- Given an LTL formula φ , construct a generalized Büchi automaton \mathcal{A}_{φ}
- 1. Rewrite φ in Negation Normal Form
 - Apply Rewriting Rules
- **2. New Efficient Translation**
 - Turn φ into generalized Büchi Automaton
- 3. Translate generalized Büchi to Büchi automaton

Rewriting

Negated Normal Form

ΙΙΑΙΚ

- Negation appears only in front of literals
 - $\neg \neg \varphi = \varphi$
 - $\neg(X\varphi) = X \neg \varphi$
 - $\neg G\varphi = F \neg \varphi$
 - $\neg F\varphi = G \neg \varphi$
 - $\neg(\varphi U\psi) = \neg\varphi R \neg \psi$
 - $\neg(\varphi R\psi) = \neg\varphi U\neg\psi$

Rewriting

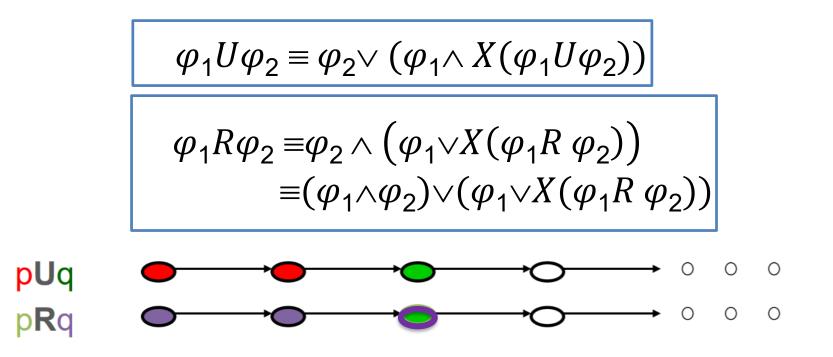
- Core Algorithm only handles
 - $\neg, \land, \lor, X, U, (R)$

ΙΙΑΙΚ

- Use rewriting Rules $\neg G\varphi = F \neg \varphi$
 - $F\varphi = true U\varphi$
 - $G\varphi = \neg F \neg \varphi = false R \varphi$
 - $\neg(\varphi R \psi) = \neg\varphi U \neg \psi$

Efficient translation of LTL to Büchi

- φ is written in NNF
- Until and Release can be written as fixpoints:



Efficient translation of LTL to Büchi

$$\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$$

$$\varphi_1 R \varphi_2 \equiv \varphi_2 \land (\varphi_1 \lor X(\varphi_1 R \varphi_2))$$

$$\equiv (\varphi_1 \land \varphi_2) \lor (\varphi_1 \lor X(\varphi_1 R \varphi_2))$$

Two Observations

1. Requirements can be split

$$\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$$

Case 1 Case 2

Efficient translation of LTL to Büchi

$$\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$$

 $\varphi_1 R \varphi_2 \equiv \varphi_2 \wedge \left(\varphi_1 \vee X(\varphi_1 R \varphi_2) \right)$ $\equiv (\varphi_1 \land \varphi_2) \lor (\varphi_1 \lor X(\varphi_1 R \varphi_2))$

- 1. Requirements can be split
- 2. Requirements may refer to *current* and *next* states

$$\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$$

Current State Next State

Data Structure

- Each node will store a set of properties that should be satisfied on paths starting at that state
 - New: subformulas of φ that need to be processed; subformulas need to hold from current state q
 - Now: subformulas of φ that have been processed; subformulas need to hold from current state q
 - Next: subformulas that need to hold from the next state q'
- ID: Unique identifier of the node

ΙΙΑΙΚ

36

Incoming: incoming transitions for a node

Node	
ID	
Incoming: New: Now: Next:	

TU Graz

Open and Closed Nodes Nodes

- Each node will store a set of properties that should be satisfied on paths starting at that state
 - New: subformulas of φ that need to be processed; subformulas need to hold from current state q
 - Now: subformulas of φ that have been processed; subformulas need to hold from current state q
 - Next: subformulas that need to hold from the next state q'
- Incoming: New: Now: Next:

- Closed nodes: Set of all nodes, that are completely processed
 - New field is empty

ΙΙΑΙΚ

37

- Nodes in closed will be the states in *A*_φ
- All nodes that must still be processed

38 procedure *EfficientLTLBuchi*(φ) *Closed* := φ ; *Open* := ((n_0 ,{*init*},{ φ }, ϕ , ϕ)) ; // Init **while** *Open* $\neq \phi$ **do** *Choose* $q \in Open$; **if** q.New = 0 **then** // q is fully processed **Demove** α from Open:

ΙΙΑΙΚ

Remove q from Open; Update Closed(q);

else

Choose ψ ∈ q.New; Move ψ from q.New to q.Now; Update Split(q,ψ); end if end while define *F*; // GBA acceptance constraints A := Build Automaton(Closed,F);

return A; end procedure

Initialisation:

Single Node in Open:

ID: *n*₀

Incoming: {init} New: { (*A U* (*B U C*))} Now: Ø Next: Ø

Nodes that will evolve from n_0 are the initial states of \mathcal{A}_{φ}

procedure *EfficientLTLBuchi*(φ)

Closed := \emptyset ; Open := ((n_0 ,{*init*},{ φ }, \emptyset , \emptyset)) ; // Init

while Open≠ Ø do

Choose $q \in Open$;

if q.New = 0 then // q is fully processed
 Remove q from Open;
 Update Closed(q);

else

Choose $\psi \in q$.New;

Move ψ from q.New to q.Now;

Update Split(q,ψ);

end if end while

define F; // GBA acceptance constraints
A := Build Automaton(Closed,F);
return A;
end procedure

- For each node: process sub-formulas in New one by one
 - When we have $\varphi_1 \lor \varphi_2$ in the New list:
 - Split node: n1: New{ φ_1 } and n2: New{ φ_2 }

41

For each node: process sub-formulas in New one by one

Processing the Set Open

- When we have $\varphi_1 \lor \varphi_2$ in the New list:
 - Split node: n1: New{φ₁} and n2: New{φ₂}
- When we have $\varphi_1 U \varphi_2$ in the New list we will use
 - $\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$
 - Split node: n1: New{ φ_1 } Next{ $X(\varphi_1 U \varphi_2)$ } and n2: New{ φ_2 }

- For each node: process sub-formulas in New one by one
 - When we have $\varphi_1 \lor \varphi_2$ in the New list:

ΙΙΑΙΚ

42

- Split node: n1: New{φ₁} and n2: New{φ₂}
- When we have $\varphi_1 U \varphi_2$ in the New list we will use
 - $\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$
 - Split node: n1: New{ φ_1 } Next{ ($\varphi_1 U \varphi_2$)} and n2: New{ φ_2 }
- When we have $\varphi_1 R \varphi_2$ in the New list we will use
 - $\varphi_1 R \varphi_2 \equiv (\varphi_1 \land \varphi_2) \lor (\varphi_1 \lor X(\varphi_1 R \varphi_2))$
 - Split node: n1: New{ φ_2 } Next{($\varphi_1 R \ \varphi_2$)} and n2: New{ $\varphi_1, \ \varphi_2$ }

- For each node: process sub-formulas in New one by one
 - When we have $\varphi_1 \lor \varphi_2$ in the New list:
 - Split node: n1: New{φ₁} and n2: New{φ₂}
 - When we have $\varphi_1 U \varphi_2$ in the New list we will use
 - $\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$
 - Split node: n1: New{ φ_1 } Next{ ($\varphi_1 U \varphi_2$)} and n2: New{ φ_2 }
 - When we have $\varphi_1 R \varphi_2$ in the New list we will use
 - $\varphi_1 R \varphi_2 \equiv (\varphi_1 \land \varphi_2) \lor (\varphi_1 \lor X(\varphi_1 R \varphi_2))$

• Split node: n1: New{ φ_2 } Next{($\varphi_1 R \ \varphi_2$)} and n2: New{ $\varphi_1, \ \varphi_2$ } procedure $Update_Split(q, \psi)$

case of

ΙΙΑΙΚ

43

$$\begin{split} \psi &= p \text{ or } \psi = \neg p: \text{ skip}; \ // \ p \in AP \\ \varphi &= \mathbf{X}\mu: \text{ add } \mu \text{ to } q.Next; \\ \varphi &= \mu \lor \eta: \ q':=Split(q); \text{ add } \mu \text{ to } q.New; \text{ add } \eta \text{ to } q'.New; \\ \varphi &= \mu \land \eta: \text{ add } \{\mu,\eta\} \text{ to } q.New; \\ \varphi &= \mu \mathbf{U}\eta: \ q':=Split(q); \text{ add } \eta \text{ to } q.New; \text{ add } \{\mu,\mathbf{X}(\mu \mathbf{U}\eta)\} \text{ to } q'.New; \\ \varphi &= \mu \mathbf{R}\eta: \ q':=Split(q); \text{ add } \{\mu,\eta\} \text{ to } q.New; \text{ add } \{\eta,\mathbf{X}(\mu \mathbf{R}\eta)\} \text{ to } q'.New; \end{split}$$

end case;

end procedure

- For each node: process sub-formulas in New one by one
 - When we have $\varphi_1 \lor \varphi_2$ in the New list:

ΙΙΑΙΚ

44

- Split node: n1: New{φ₁} and n2: New{φ₂}
- When we have $\varphi_1 U \varphi_2$ in the New list we will use
 - $\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$
 - Split node: n1: New{ φ_1 } Next{ ($\varphi_1 U \varphi_2$)} and n2: New{ φ_2 }
- When we have $\varphi_1 R \varphi_2$ in the New list we will use
 - $\varphi_1 R \varphi_2 \equiv (\varphi_1 \land \varphi_2) \lor (\varphi_1 \lor X(\varphi_1 R \varphi_2))$
 - Split node: n1: New{ φ_2 } Next{($\varphi_1 R \varphi_2$)} and n2: New{ φ_1, φ_2 }

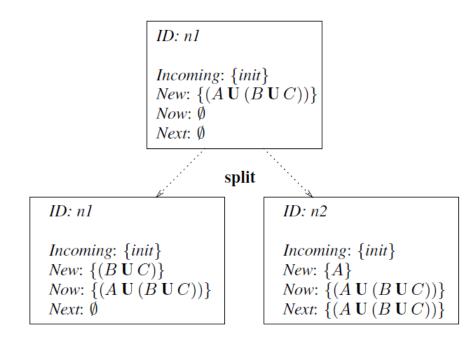
procedure Split(q)
 create q' = (freshID, q.Incoming, q.New, q.Now, q.Next);
 // q' identical to q except for ID
 return q';
end procedure

- Process Node n1: When we have $\varphi_1 U \varphi_2$ in the New list we will use
 - $\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$

ΙΙΑΙΚ

45

• Split node: n1: New{ φ_2 } and n2: New{ φ_1 } Next: ($\varphi_1 U \varphi_2$)}



procedure *EfficientLTLBuchi*(φ)

Closed := \emptyset ;

Open := ($(n_0, \{init\}, \{\varphi\}, \emptyset, \emptyset)$) ; // Init

while Open≠ Ø do

Choose $q \in Open$;

if q.New = 0 then // q is fully processed
 Remove q from Open;
 Update Closed(q);

else

Choose $\psi \in q$.New; Move ψ from q.New to q.Now; Update Split(q, ψ);

end if end while

define F; // GBA acceptance constraints
A := Build Automaton(Closed,F);
return A;
end procedure

Update_Closed(q)

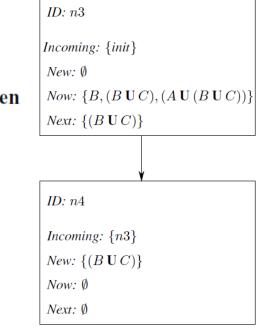
- Applied if q.New is empty
- If a node q' with same values for Now and next exists:
 - Incomming edges of q are added to q'
- Else

ΙΙΑΙΚ

47

- Insert q in Closed by. Create q' as possible successor.
- q'.New = q.Next

```
procedure Update\_Closed(q)Image: figure of the set of the se
```



procedure *EfficientLTLBuchi*(φ)

Closed := \emptyset ; Open := ((n_0 ,{init},{ φ }, \emptyset , \emptyset)) ; // Init while Open $\neq \emptyset$ do Choose $q \in Open$; if q.New = 0 then // q is fully processed Remove q from Open; Update Closed(q); else Choose $\psi \in q.New$;

Move ψ from q.New to q.Now;

Update Split(q,ψ);

end if end while

define F; // GBA acceptance constraints

A := Build Automaton(Closed,F); return A; end procedure

Accepting States of GBA - Enforcing Eventualities

- Multiple accepting sets
 - One for each *Until* sub-formula ($\phi \cup \psi$)
 - Nodes in Closed in which either
 - The Now field doesn't contain ϕ U ψ
 - or

ΙΑΙΚ

49

• The Now field does contain ψ

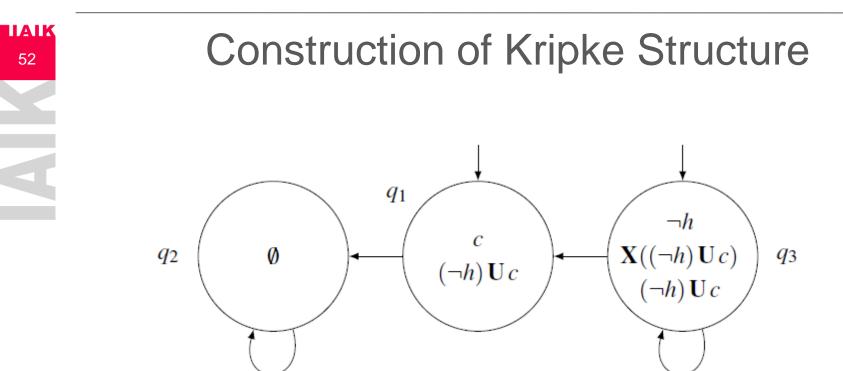
Construction of Kripke Structure

- Once open is empty
- For each node in closed
 - Create a new node with all the Now formulas
- Create edges between nodes using *Incoming*
- Use the set of sets of accepting states *F* from before

51

Construction of Kripke Structure

- The set of states S is the set of nodes in Closed.
- The set of initial states is $S_0 = \{q \in S | init \in q. Incoming\}.$
- The transition relation $R \subseteq S \times S$ is defined as follows: $(q,q') \in R$ if and only if $q \in q'$. *Incoming*.
- *AP* is the set of atomic propositions in φ . That is, $AP = \{p | p \in AP_{\varphi}\}$. Let $\overline{AP} = \{\neg p | p \in AP\}$.
- The labeling of states is L(q) = q.Now
- The generalized Büchi acceptance sets F which includes, for every subformula of φ of the form $\mu \mathbf{U}\eta$, a set $P_{\mu \mathbf{U}\eta} = \{q \mid \eta \in q.Now \text{ or } (\mu \mathbf{U}\eta) \notin q.Now \}.$



The Kripke structure resulting from algorithm EfficientLTLBuchi when given the formula $(\neg h)Uc$

Institute for Applied Information Processing and Communications 09.06.2022

