

Automata and LTL Model Checking Part-2 Bettina Könighofer

Model Checking SS22

May 12 2022

Outline

Finite automata on finite words

ΙΙΔΙΚ

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Translation of LTL to Büchi automata

Checking for emptiness of $\mathcal{L}(\mathcal{B})$

- An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinite number of times.
 - $inf(\rho) \cap F \neq \emptyset$
- How to check for $L(A) = \emptyset$?

Checking for emptiness of $\mathcal{L}(\mathcal{B})$

- An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinite number of times.
 - $\inf(\rho) \cap F \neq \emptyset$
- How to check for L(A) = Ø?
- Empty if there is no reachable accepting state on a cycle.

Institute for Applied Information Processing and Communications 14.05.2022

Non-emptiness ⇔

Existence of reachable accepting cycles

- **Lemma:** Let $\mathcal{B} = (\Sigma, Q, \Delta, Q^0, F)$ be a Büchi automaton. The following conditions are equivalent:
- $\mathcal{L}(\mathcal{B})$ is nonempty.
- B contains a strongly connected component C, which includes an accepting state. Moreover, C is reachable from an initial state of B.
- The graph induced by B contains a path from an initial state of B to a state t ∈ F and a path from t back to itself.

Example

LIAIK

- Is the language $\mathcal{L}(\mathcal{B})$ empty?
- If not, what is the $\mathcal{L}(\mathcal{B})$

Example

- The language $\mathcal{L}(\mathcal{B})$ is nonempty.
- L(B) = {inf number of a's and inf number of b's}
- <r₂,q₁,2> is accepting and reachable from <r₁,q₁,0> and reachable from itself

IAIK

7

 $\langle \mathbf{r}_1, \mathbf{q}_2, \mathbf{1} \rangle$

 $\langle r_1, q_1, 0 \rangle$

Institute for Applied Information Processing and Communications 14.05.2022

Outline

Finite automata on finite words

ΙΔΙΚ

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Translation of LTL to Büchi automata

Generalized Büchi automata

- Have several sets of accepting states
- B =(Σ,Q,Δ,Q⁰,F) is a generalized Büchi automaton:
 F = {P₁, ..., P_k}, where for every 1 ≤ i ≤ k, P_i ⊆ Q
- A run ρ of **B** is accepting if for each $P_i \in F$, *inf*(ρ) $\cap P_i \neq \emptyset$

Translation from Generalized Büchi to Büchi

- Given $\mathcal{B} = (\Sigma, Q_1, \Delta_1, Q_1^0, F_1)$ with $\mathbf{F} = \{P_1, \dots, P_k\}$
- How does it work to construct a Büchi automaton B' that accepts the same language?

Translation from Generalized Büchi to Büchi

- $\mathcal{B} = (\Sigma, Q_1, \Delta_1, Q_1^0, F_1)$ with $F = \{P_1, \dots, P_k\}$
- $\mathcal{B}' = (\Sigma, \mathbb{Q} \times \{0, 1, \dots, k\}, \Delta', \mathbb{Q}^0 \times 0, \mathbb{Q} \times k)$ with:

Translation from Generalized Büchi to Büchi

- $\mathcal{B} = (\Sigma, \mathbf{Q}_1, \Delta_1, \mathbf{Q}_1^{0}, \mathbf{F}_1)$ with $\mathbf{F} = \{\mathsf{P}_1, \dots, \mathsf{P}_k\}$
- $\mathcal{B}' = (\Sigma, \mathbb{Q} \times \{0, 1, \dots, k\}, \Delta', \mathbb{Q}^0 \times 0, \mathbb{Q} \times k)$ with:
- The transition relation Δ' : $((q,x),a,(q',y)) \in \Delta'$ when $(q,a,q') \in \Delta$ and x and y are as follows:
 - If $q' \in P_i$ and x=i, then y=i+1 for i<k
 - If x=k, then y=0.
 - Otherwise, x = y.

```
Size of \mathcal{B}' = (size of \mathcal{B}) × (k+1)
```


Outline

Finite automata on finite words

ΙΙΔΙΚ

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Translation of LTL to Büchi automata

IIAIK 14

Kripke Structure M to Büchi Automaton \mathcal{A}_{M}

- Move labels to incoming transitions
 - Push labels backwards
- All states are accepting
 - What about initial states?

Secure & Correct Systems

Automata and Kripke Structures

$$\begin{split} &M = (S, S_0, R, AP, L) \implies \mathcal{A}_M = (\Sigma, S \cup \{\iota\}, \Delta, \{\iota\}, S \cup \{\iota\}), \\ &\text{where } \Sigma = \mathsf{P}(A\mathsf{P}). \end{split}$$

- $(s,\alpha,s') \in \Delta$ for $s,s' \in S \Leftrightarrow (s,s') \in R$ and $\alpha = L(s')$
- $(\iota, \alpha, s) \in \Delta \Leftrightarrow s \in S_0$ and $\alpha = L(s)$

ΙΙΑΙΚ

16

L

Institute for Applied Information Processing and Communications 14.05.2022

Outline

Finite automata on finite words

ΙΙΔΙΚ

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Translation of LTL to Büchi automata

Model Checking when system *A* and spec *S* are given as Büchi automata

- \mathcal{A} satisfies \mathcal{S} if $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{S})$
 - Is any behavior of A allowed by S?

Sequences satisfying S

Computations of \mathcal{A}

All possible sequences

• \mathcal{A} does not satisfy \mathcal{S} if $\mathcal{L}(\mathcal{A}) \nsubseteq \mathcal{L}(\mathcal{S})$

- Check whether $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{S})$
 - $\underline{\mathsf{Equivalent:}} \\
 \mathcal{L}(\mathcal{A}) \nsubseteq \mathcal{L}(\mathcal{S}) \equiv \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\overline{\mathcal{S}}) \neq \emptyset$

Institute for Applied Information Processing and Communications 14.05.2022

Model Checking – suggested algorithm when system *A* and spec *S* are given as Büchi automata

- 1. Complement S. The resulting Büchi automaton is \overline{S}
- 2. Construct the automaton **B** with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\overline{\mathcal{S}})$
- **3.** If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow \mathcal{A}$ satisfies \mathcal{S}
- 4. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample
 - a computation in \mathcal{A} that does not satisfy \mathcal{S}

How can we avoid building the complement of S?

Model Checking – suggested algorithm when system *A* and spec *S* are given as Büchi automata

very hard!

- Complement S. The resulting Büchi automaton is S
 Construct the automaton B with L(B) = L(A) ∩ L(S)
 If L(B) = Ø ⇒ A satisfies S
 Otherwise, a word v ⋅ w^ω ∈ L(B) is a counterexample
 - a computation in ${\cal A}$ that does not satisfy ${\cal S}$

How can we avoid building the complement of *S*?

Model Checking of LTL

given an LTL property φ and a Kripke structure M check whether $M \models \varphi$

- 1. Construct $\neg \varphi$
- 2. Construct a Büchi automaton $S_{\neg \varphi}$
- **3.** Translate M to an automaton \mathcal{A} .
- 4. Construct the automaton **B** with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{S}_{\neg \varphi})$
- **5.** If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow \mathcal{A}$ satisfies φ
- 6. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample
 - a computation in M that does not satisfy φ

Outline

Finite automata on finite words

ΙΙΔΙΚ

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Translation of LTL to Büchi automata

Translation of LTL to Büchi automata

- Given an LTL formula φ , construct a generalized Büchi automaton \mathcal{A}_{φ}
- \mathcal{A}_{φ} accepts exactly all the traces that satisfy φ

Translation of LTL to Büchi automata

Given an LTL formula φ , construct a generalized Büchi automaton \mathcal{A}_{φ}

- **1.** Translate φ into generalized Büchi Automaton
- 2. Translate generalized Büchi to Büchi automaton

Rewriting

- Algorithm only handles
 - ¬,∧,∨,*X*,*U*

IIAIK

- Use rewriting Rules $\neg G\varphi = F \neg \varphi$
 - $F\varphi = true U\varphi$
 - $G\varphi = \neg F \neg \varphi$

- Step 1: Based on φ , we define the state space of \mathcal{A}_{φ}
- Each state of the automata is labelled with a set of properties/sub-formulas that should be satisfied on paths starting at that state

Closure of an LTL formula $\varphi - cl(\varphi)$

- cl(φ)
 - ... subformulas of φ and their negation
 - ... subsets of $cl(\varphi)$ define state space of \mathcal{A}_{φ}

Closure of an LTL formula $\varphi - cl(\varphi)$

- **cl**(φ)
 - ... subformulas of φ and their negation
- Formally:
 - $\varphi \in cl(\varphi)$.
 - If $\varphi_1 \in cl(\varphi)$, then $\neg \varphi_1 \in cl(\varphi)$.
 - If $\neg \varphi_1 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$.
 - If $\varphi_1 \lor \varphi_2 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$ and $\varphi_2 \in cl(\varphi)$.
 - If $X \varphi_1 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$.
 - If $\varphi_1 U \varphi_2 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$ and $\varphi_2 \in cl(\varphi)$.

Closure of an LTL formula $\varphi - cl(\varphi)$

cl(φ)

• ... subformulas of φ and their negation

- $\varphi \coloneqq (\neg p U ((Xq) \lor r))$
- Compute $cl(\varphi)$

Closure of an LTL formula φ

- cl(φ)
 - ... subformulas of φ and their negation

•
$$\varphi \coloneqq (\neg p U ((Xq) \lor r))$$

• $cl((\neg pU((Xq) \lor r))) =$
 $\{ (\neg pU((Xq) \lor r)), \neg (\neg pU((Xq) \lor r)), \neg (\neg pU((Xq) \lor r)), (Xq) \lor r), (Xq) \lor r), (Xq), \neg (Xq), q, \neg q, r, \neg r \}$

Good sets in $cl(\varphi)$

- $S \subseteq cl(\varphi)$ is **good** in $cl(\varphi)$ if S is a maximal set of formulas in $cl(\varphi)$ that is **consistent**:
- 1. For all $\varphi_1 \in cl(\varphi)$: $\varphi_1 \in S \Leftrightarrow \neg \varphi_1 \notin S$, 2. For all $\varphi_1 \lor \varphi_2 \in cl(\varphi)$: $\varphi_1 \lor \varphi_2 \in S \Leftrightarrow$ at least one of φ_1, φ_2 is in *S*.

The set of all **good sets** of $cl(\varphi)$ defines the state space of \mathcal{A}_{φ}

ΙΔΙΚ

- $\boldsymbol{\mathcal{A}}_{\boldsymbol{\varphi}} = (\boldsymbol{\mathcal{P}}(\mathsf{AP}), \mathbf{Q}, \boldsymbol{\Delta}, \mathbf{Q}^0, \mathbf{F})$
- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi))$ is the set of all the good sets in $cl(\varphi)$.
- Next:

Each state of \mathcal{A}_{φ} is **labelled** with a set of properties that should be satisfied on all paths starting at that state

 $\boldsymbol{\mathcal{A}}_{\boldsymbol{\varphi}} = (\boldsymbol{\mathcal{P}}(\mathsf{AP}), \mathbf{Q}, \boldsymbol{\Delta}, \mathbf{Q}^{0}, \mathbf{F})$

• For q, q' \in Q and $\sigma \subseteq$ AP, $(q,\sigma,q') \in \Delta$ if:

1.
$$\sigma ~=~ q' ~\cap~ AP$$
 (push labels backwards)

2.
$$X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$$

3. $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$

$$\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$$

Note that the last condition also means that for all $\neg(\varphi_1 U \varphi_2) \in cl(\varphi)$, we have that $\neg(\varphi_1 U \varphi_2) \in q$ iff $\neg \varphi_2 \in q$ and either $\neg \varphi_1 \in q$ or $\neg(\varphi_1 U \varphi_2) \in q'$.

0	7

$$\varphi = (a \lor X \neg b)$$

$$X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$$

Draw the state space and the transitions.

IIAIK

States 4, 6, 8 have no outgoing edges

Institute for Applied Information Processing and Communications 14.05.2022

$\boldsymbol{\mathcal{A}}_{\boldsymbol{\varphi}} = (\boldsymbol{\mathcal{P}}(\mathsf{AP}), \mathbf{Q}, \boldsymbol{\Delta}, \mathbf{Q}^0, \mathbf{F})$

What are the initial states?

Each state of \mathcal{A}_{φ} is **labelled** with a set of properties that should be satisfied on all paths starting at that state

Institute for Applied Information Processing and Communications 14.05.2022

 $\boldsymbol{\mathcal{A}}_{\boldsymbol{\varphi}} = (\boldsymbol{\mathcal{P}}(\mathsf{AP}), \mathbf{Q}, \boldsymbol{\Delta}, \{\boldsymbol{\iota}\}, \mathbf{F})$

MALLORCA

- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi)) \cup \{\iota\}$ is the set of all the good sets in $cl(\varphi) \cup \{\iota\}$.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$

Each state of \mathcal{A}_{φ} is **labelled** with a set of properties that should be satisfied on all paths starting at that state

$\boldsymbol{\mathcal{A}}_{\boldsymbol{\varphi}} = (\boldsymbol{\mathcal{P}}(\mathsf{AP}), \mathbf{Q}, \boldsymbol{\Delta}, \{\boldsymbol{\iota}\}, \mathbf{F})$

ΙΔΙΚ

- Q ⊆ 𝒫 (cl(φ)) ∪ {ι} is the set of all the good sets in cl(φ) ∪ {ι}.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set
 - $F_{\varphi_1} \bigcup \varphi_2 = \{ q \in \mathbf{Q} \mid \varphi_2 \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q \}.$

Institute for Applied Information Processing and Communications 14.05.2022

$\boldsymbol{\mathcal{A}}_{\boldsymbol{\varphi}} = (\boldsymbol{\mathcal{P}}(\mathsf{AP}), \mathbf{Q}, \boldsymbol{\Delta}, \{\boldsymbol{\iota}\}, \mathbf{F})$

- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi)) \cup {\mathbf{\iota}}$ is the set of all the good sets in $cl(\varphi) \cup {\mathbf{\iota}}$.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set
 - $F_{\varphi_1} \bigcup \varphi_2 = \{ q \in \mathbf{Q} \mid \varphi_2 \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q \}.$

ToDo

ΙΔΙΚ

46

What is the complexity?

- Q ⊆ 𝒫 (cl(φ)) ∪ {ι} is the set of all the good sets in cl(φ) ∪ {ι}.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set
 - $F_{\varphi_1} \bigcup \varphi_2 = \{q \in \mathbf{Q} \mid \varphi_2 \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q\}.$
- What is the complexity?

ΙΔΙΚ

47

• \mathcal{A}_{φ} is **always exponential** in the size of φ .

Institute for Applied Information Processing and Communications 14.05.2022

