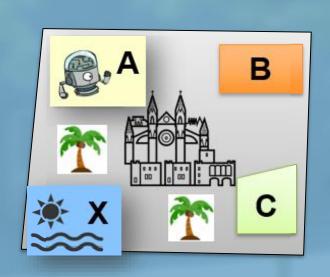
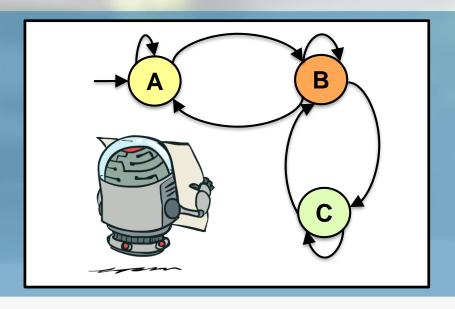


### **CTL Model Checking**

Bettina Könighofer

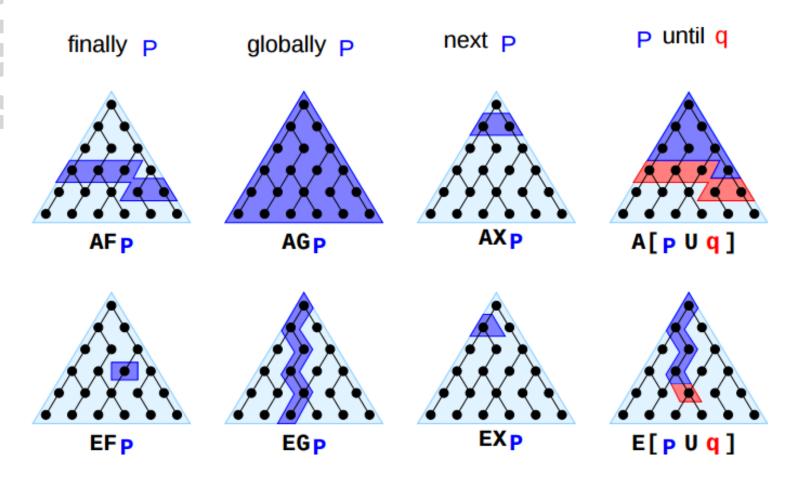




Model Checking SS21

May 5<sup>th</sup> 2021









#### The Dining-Philosophers Verification-Problem



There are n philosophers sitting at a round table.

There is one chopstick between each pair of adjacent philosophers.

Each philosopher needs two chopsticks to eat, Therefore, adjacent philosophers cannot eat simultaneously.





The Dining-Philosophers Verification-Problem

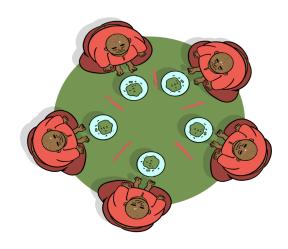
#### Variables:

- $h_i$  ... philosopher i is hungry
- $e_i$  ... philosopher i is eating





- Translate into CTL:
  - "Every hungry philosopher eats eventually"







The Dining-Philosophers Verification-Problem

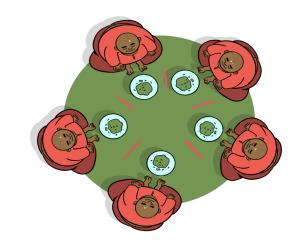
#### Variables:

- $h_i$  ... philosopher i is hungry
- $e_i$  ... philosopher i is eating



#### Translate into CTL:

- "Every hungry philosopher eats eventually"
- $AG(h_1 \rightarrow AF e_1) \land$
- $AG(h_2 \rightarrow AF e_2) \land \cdots$ .







The Dining-Philosophers Verification-Problem

- Translate into CTL:
- "An eating philosopher eventually loses her appetite".



- "An eating philosopher that is still hungry will continue to eat"
- "An eating philosopher prevents her neighbours from eating"
- "There exists a scenario in which philosopher 2 starves"







The Dining-Philosophers Verification-Problem



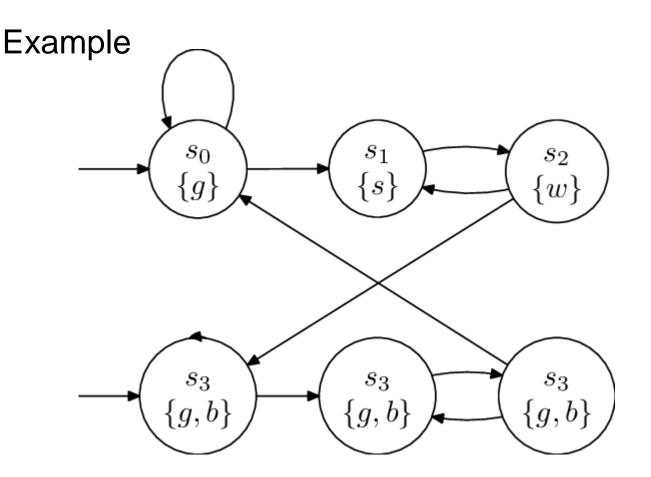


- $AG(e_i \rightarrow AF \neg h_i)$
- "An eating philosopher that is still hungry will continue to eat"
  - $AG(e_i \wedge h_i \rightarrow AXe_i)$
- "An eating philosopher prevents her neighbours from eating"
  - $AG(e_i \rightarrow (\neg e_{i-1} \land \neg e_{i+1})$
- "There exists a scenario in which philosopher 2 starves"
  - $\mathsf{E}G(h_i \land \neg e_i)$



# 8

### Warm-Up Kripke Structure









# Warm-Up Kripke Structure Mutual Exclusion

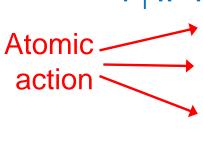
- Two processes with a joint Boolean signal sem
- Each process P<sub>i</sub> has a variable v<sub>i</sub> describing its state:
  - $\mathbf{v}_{i} = \mathbf{N}$  Non-critical
  - $\mathbf{v}_{i} = \mathbf{T}$  Trying
  - $\mathbf{v}_{i} = \mathbf{C}$  Critical



# Warm-Up Kripke Structure Mutual Exclusion

Each process runs the following program:

```
P<sub>i</sub> :: while (true) {
```



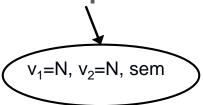
```
if (v_i == N) v_i = T;
else if (v_i == T \&\& sem) { v_i = C; sem = 0; }
else if (v_i == C) {v_i = N; sem = 1; }
```

- The full program is: P<sub>1</sub>||P<sub>2</sub>
- Initial state: (v<sub>1</sub>=N, v<sub>2</sub>=N, sem)

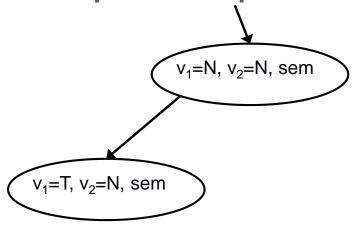


Draw the **Kipke Structure** that represents the interleaving execution

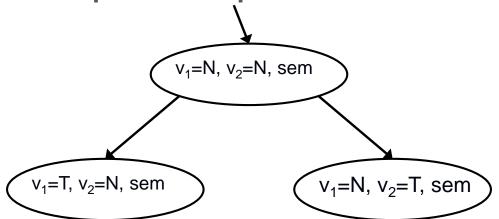




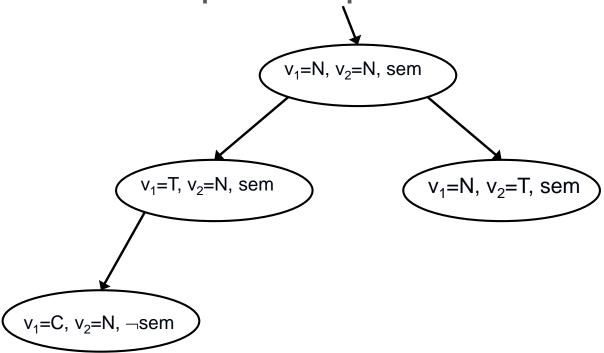




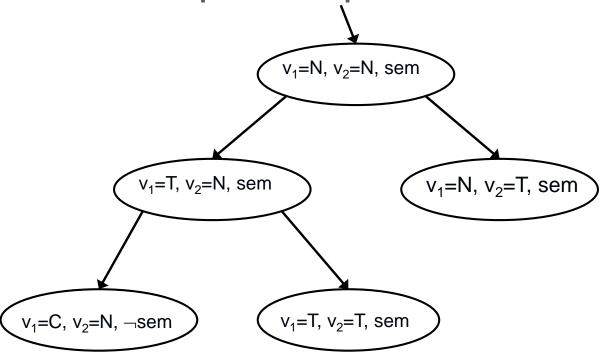




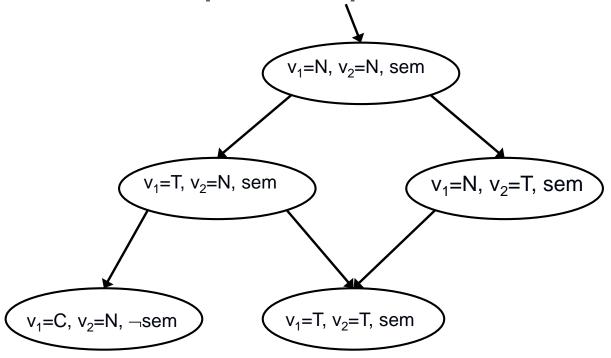




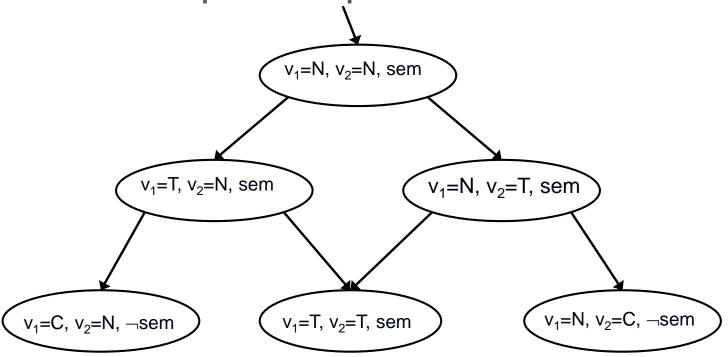




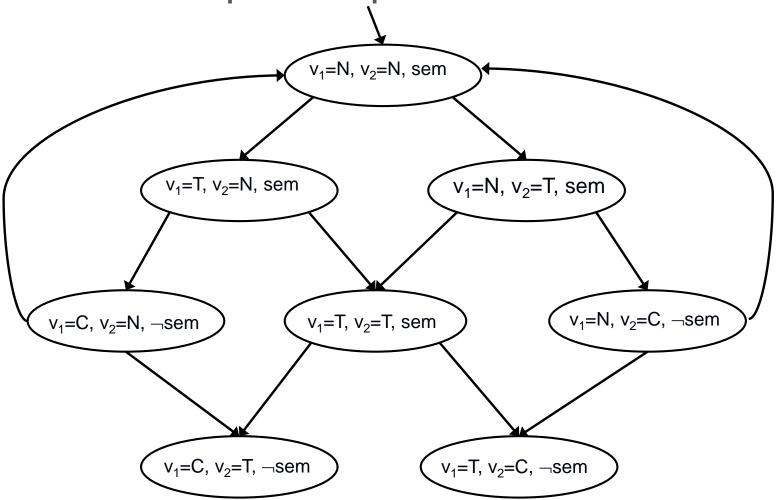




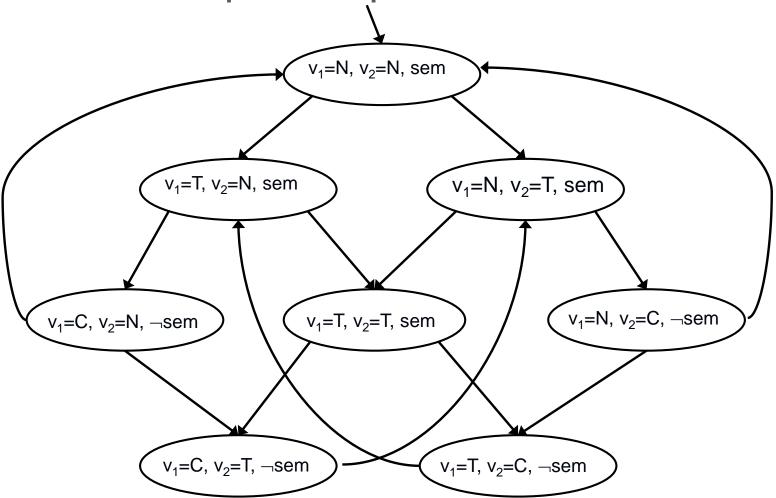




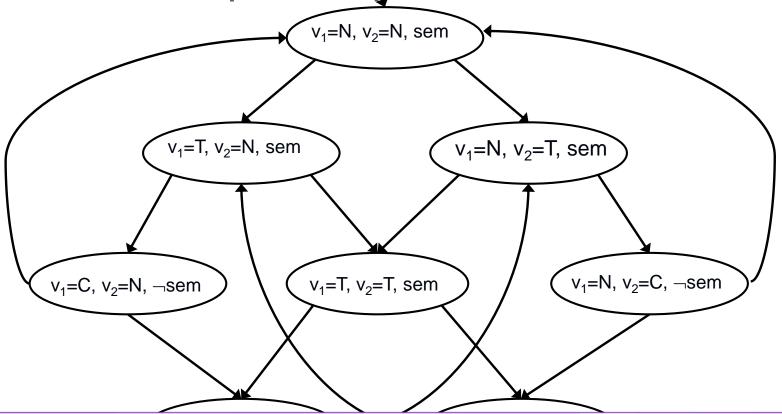








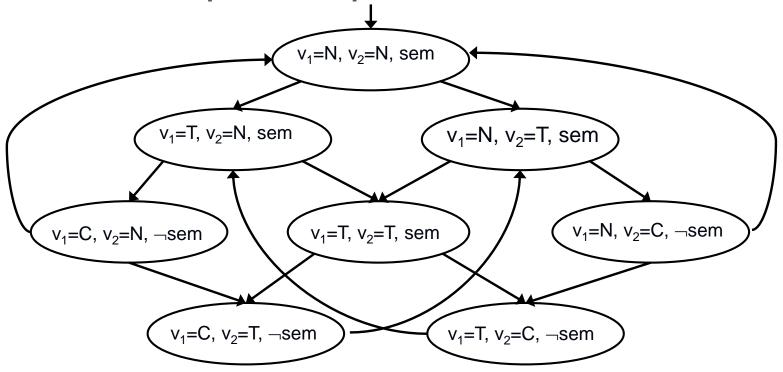




Today – Check Properties on Kripke Structures:
E.g.: Is there an execution trace s.t. P1 and P2 are

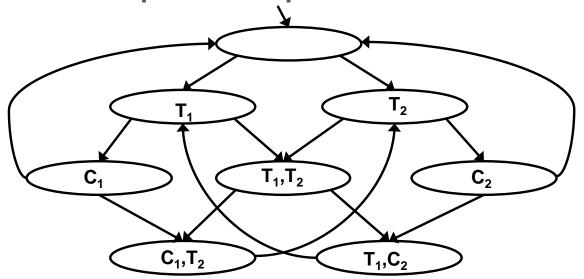
both in the critical section?





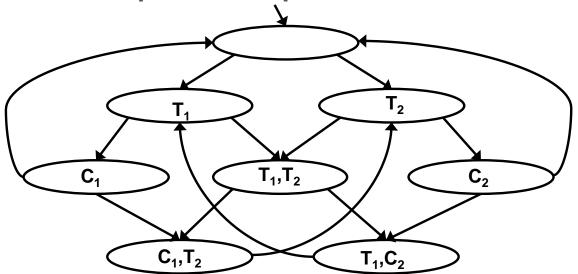






- We define atomic propositions: AP={C<sub>1</sub>,C<sub>2</sub>,T<sub>1</sub>,T<sub>2</sub>)
- A state is labeled with T<sub>i</sub> if v<sub>i</sub>=T
- A state is labeled with C<sub>i</sub> if v<sub>i</sub>=C



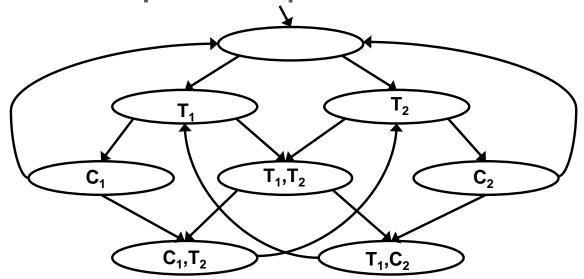




- Does it hold that M ⊨ f?
  - Property 1:  $f := AG \neg (C_1 \land C_2)$
  - Compute  $[[f]]_M = \{ s \in S \mid M, s \models f \}$  and check  $S_0 \subseteq [[f]]_M$



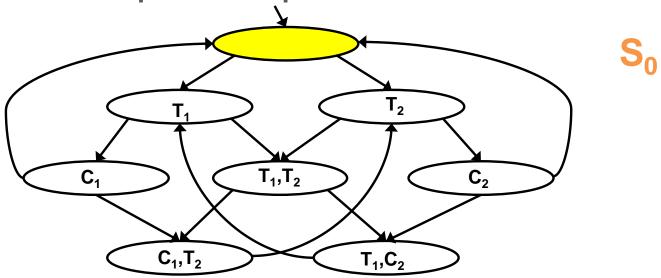




- Does it hold that M ⊨ f?
  - Property 1:  $f := AG \neg (C_1 \land C_2)$
- Yes, if  $\neg(C_1 \land C_2)$  holds in all reachable states
- $S_i \equiv$  reachable states from an initial state after i steps



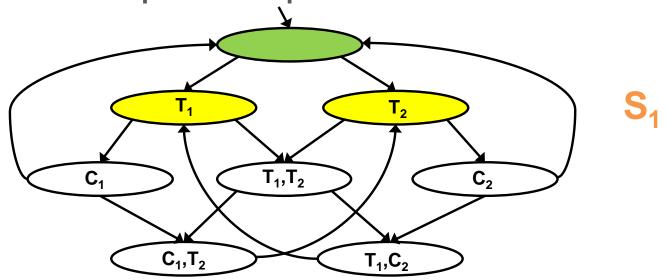




- Does it hold that M ⊨ f?
  - Property 1:  $f := AG \neg (C_1 \land C_2)$
- Yes, if  $\neg(C_1 \land C_2)$  holds in all reachable states
- $S_i \equiv$  reachable states from an initial state after i steps



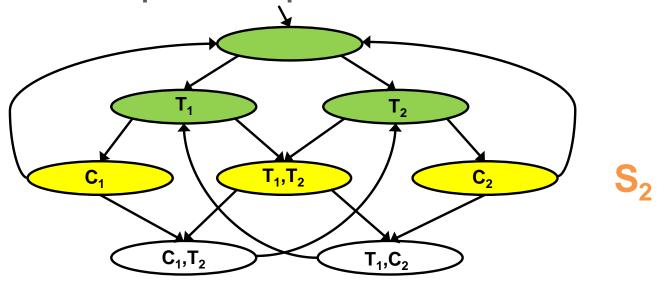




- Does it hold that M ⊨ f?
  - Property 1:  $f := AG \neg (C_1 \land C_2)$
- Yes, if  $\neg(C_1 \land C_2)$  holds in all reachable states
- S<sub>i</sub>  $\equiv$  reachable states from an initial state after i steps



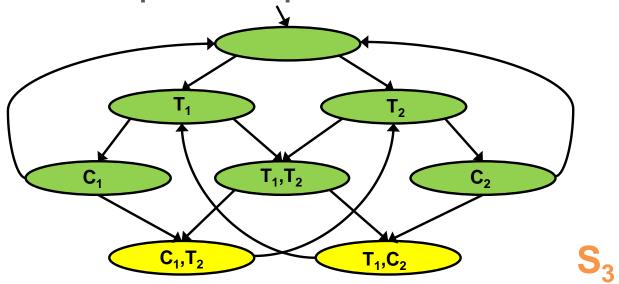




- Does it hold that M ⊨ f?
  - Property 1:  $f := AG \neg (C_1 \land C_2)$
- Yes, if  $\neg(C_1 \land C_2)$  holds in all reachable states
- S<sub>i</sub>  $\equiv$  reachable states from an initial state after i steps



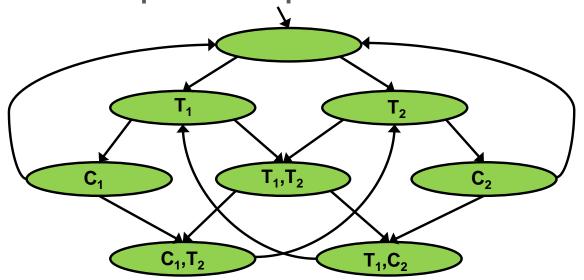




- Does it hold that  $M \models f$ ?
  - Property 1:  $f := \mathbf{AG} \neg (C_1 \land C_2)$
- $S_i \equiv$  reachable states from an initial state after i steps







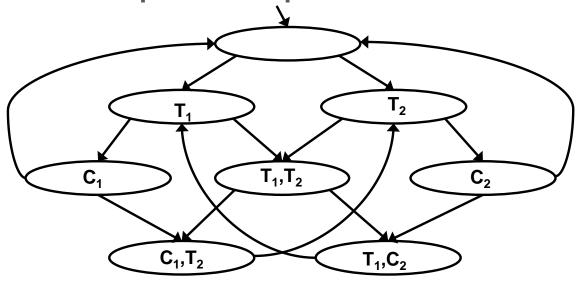
- Does it hold that  $M \models f$ ?
  - Property 1:  $f := AG \neg (C_1 \land C_2)$

$$M \models AG \neg (C_1 \land C_2)$$





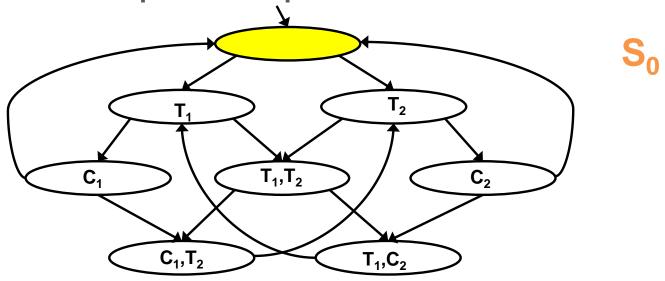




- Does it hold that  $M \models f$ ?
  - Property 2:  $f := \mathbf{AG} \neg (\mathsf{T}_1 \land \mathsf{T}_2)$



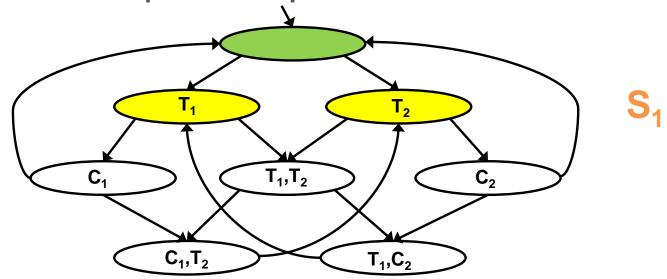




- Does it hold that  $M \models f$ ?
  - Property 2:  $f := \mathbf{AG} \neg (\mathsf{T}_1 \land \mathsf{T}_2)$
- $S_i \equiv$  reachable states from an initial state after i steps

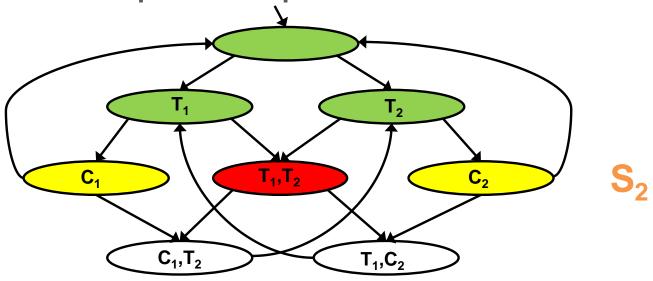






- Does it hold that  $M \models f$ ?
  - Property 2:  $f := \mathbf{AG} \neg (T_1 \wedge T_2)$
- $S_i \equiv$  reachable states from an initial state after i steps





- Does it hold that M ⊨ f?
  - Property 1:  $f := AG \neg (T_1 \land T_2)$   $M \not\models AG \neg (T_1 \land T_2)$



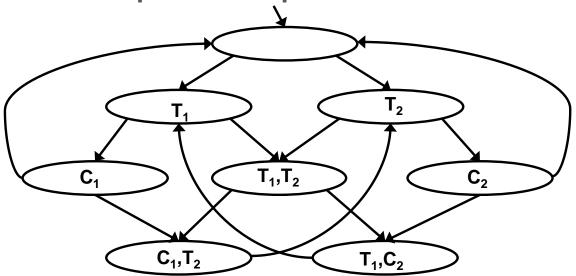




- Does it hold that M ⊨ f?
  - Property 1:  $f := AG \neg (T_1 \land T_2)$   $\not M \not\models AG \neg (T_1 \land T_2)$
- Model checker returns a counterexample





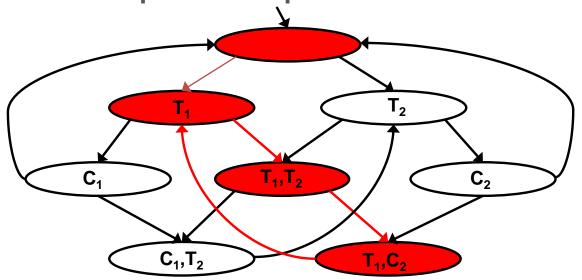




- Does it hold that  $M \models f$ ?
  - Property 3:  $f := AG ((T_1 \rightarrow FC_1) \land (T_2 \rightarrow FC_2))$
- In case  $M \not= f$ , compute a counterexample







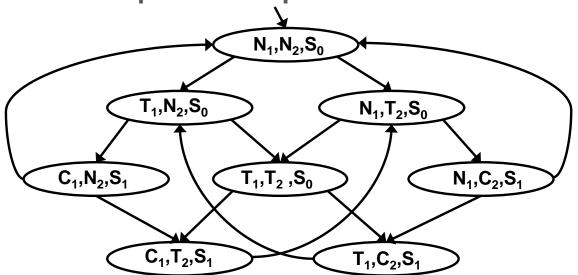
- Does it hold that M ⊨ f?
  - Property 3:  $f := AG ((T_1 \rightarrow FC_1) \land (T_2 \rightarrow FC_2))$
- In case M ⊭ f, compute a counterexample

$$M \not\models AG ((T_1 \rightarrow F C_1) \land (T_2 \rightarrow F C_2))$$





#### Warm-Up Example: Mutual Exclusion



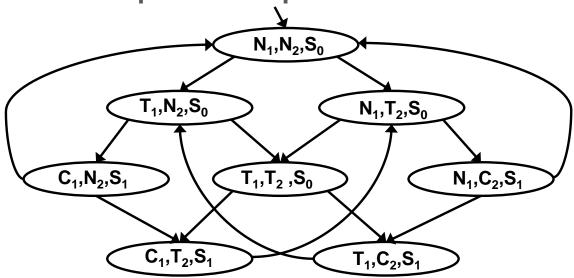


- Does it hold that  $M \models f$ ?
  - Property 4:  $f := AG EF (N_1 \wedge N_2 \wedge S_0)$
- How would you express property 4 in natural language?
- In case M ⊭ f, compute a counterexample





#### Warm-Up Example: Mutual Exclusion



- Does it hold that M ⊨ f? √
  - Property 4:  $f := AG EF (N_1 \wedge N_2 \wedge S_0)$
- No matter where you are there is always a way to get to the initial state (restart)



## **CTL Model Checking**



#### The Model Checking Problem

- Given a Kripke structure M and a CTL formula f
- Model Checking Problem:
  - M ⊨ f, i.e., M is a model for f





#### The Model Checking Problem

- Given a Kripke structure M and a CTL formula f
- Model Checking Problem:
  - M ⊨ f, i.e., M is a model for f
- Alternative Definition
  - Compute [f]<sub>M</sub> = { s ∈ S | M,s ⊨ f }, i.e., all states satisfying f
  - Check  $S_0 \subseteq [f]_M$  to conclude that  $M \models f$



The goal is to compute  $[g]_M$  for every subformula g of f, including  $[f]_M$ 

- Work iteratively on subformulas of f
  - from simpler to complex subformulas
- Example: Sub-Formulas for checking
   AG( request → AF grant)



The goal is to compute  $[g]_M$  for every subformula g of f, including  $[f]_M$ 

- Work iteratively on subformulas of f
  - from simpler to complex subformulas
- Example: Sub-Formulas for checking
   AG( request → AF grant)
  - Ceck grant, request
  - Then check AF grant
  - Next check request → AF grant
  - Finally check AG( request → AF grant)





For each s, computes label(s), which is the set of sub-formulas of f that are true in s





- For each s, computes label(s), which is the set of sub-formulas of f that are true in s
- For sub-formula g, the algorithm adds g to label(s) for every state s that satisfies g
- When we finish checking g, the following holds:
  - $g \in label(s) \Leftrightarrow M, s \models g$
- $M \models f$  if and only if  $f \in label(s)$  for all initial states





# For what types of sub-formulas to we need an MC algorithm?

- All CTL formulas can be transformed to use only the operators:
  - ¬, ∨, EX, EU, EG
- MC algorithm needs to handle AP and ¬, ∨, EX, EU, EG



#### Model Checking Atomic Propositions

• Procedure for labeling the states satisfying  $p \in AP$ :

$$p \in label(s) \Leftrightarrow p \in L(s)$$

Held by alg Defined by M







#### Model Checking ¬, ∨- Formulas

- Let  $f_1$  and  $f_2$  be sub-formulas that have already been checked
- added to label(s), when needed
- Procedures for labeling states satisfying  $\neg f_1$ :
  - $\neg f_1$  add to label(s) if and only if  $f_1 \notin label(s)$
- Give the procedure for labeling states satisfying  $f_1 \lor f_2$





#### Model Checking ¬, ∨- Formulas

- Let  $f_1$  and  $f_2$  be sub-formulas that have already been checked
- added to label(s), when needed



- Procedures for labeling states satisfying  $\neg f_1$ :
  - add  $\neg f_1$  to label(s) if and only if  $f_1 \notin label(s)$
- Give the procedure for labeling states satisfying  $f_1 \lor f_2$ 
  - add  $f_1 \lor f_2$  to label(s) if and only if  $f_1 \in labels(s)$  or  $f_2 \in label(s)$









• Give the procedures for labeling states satisfying  $EXf_1$ 





- Give the procedures for labeling states satisfying  $EXf_1$ 
  - Add g to label(s) if and only if s has a successor t such that f₁∈ label(t)

```
\begin{split} & \text{procedure CheckEX } (f_1) \\ & \text{T} := \{\, t \mid f_1 \in \text{label}(t) \,\} \\ & \text{while } T \neq \varnothing \quad \text{do} \\ & \text{choose } t \in T; \ T := T \setminus \{t\}; \\ & \text{for all s such that } R(s,t) \text{ do} \\ & \text{if EX } f_1 \not \in \text{label}(s) \text{ then} \\ & \text{label}(s) := \text{label}(s) \cup \{ \text{ EX } f_1 \}; \end{split}
```





- Procedures for labeling states satisfying  $E(f_1Uf_2)$ 
  - Think how you can rewrite the procedure CheckEX

```
\begin{aligned} &\text{procedure CheckEX } (f_1) \\ &T := \{ \ t \mid f_1 \in \text{label}(t) \ \} \end{aligned} \begin{aligned} &\text{while } T \neq \varnothing \quad \text{do} \\ &\text{choose } t \in T; \quad T := T \setminus \{t\}; \\ &\text{for all s such that } R(s,t) \text{ do} \\ &\text{if EX } f_1 \not\in \text{label}(s) \text{ then} \\ &\text{label}(s) := \text{label}(s) \cup \{ \text{EX } f_1 \}; \end{aligned}
```

```
procedure CheckEU (f_1,f_2)

T :=

for all t \in T do
    label(t) :=

while T \neq \emptyset do
    choose t \in T; T := T \setminus \{t\};
    for all s such that R(s,t) do
```





#### Procedures for labeling states satisfying $E(f_1Uf_2)$

```
procedure CheckEX (f_1)
T := \{ t \mid f_1 \in label(t) \}
while T \neq \emptyset do
choose \ t \in T; \ T := T \setminus \{t\};
for \ all \ s \ such \ that \ R(s,t) \ do
if \ EX \ f_1 \not \in label(s) \ then
label(s) := label(s) \cup \{ \ EX \ f_1 \};
```

```
procedure CheckEU (f_1,f_2)

T := \{ t \mid f_2 \in label(t) \}

for all t \in T do

label(t) :=

while T \neq \emptyset do

choose t \in T; T := T \setminus \{t\};

for all s such that R(s,t) do
```





#### Procedures for labeling states satisfying $E(f_1Uf_2)$

```
procedure CheckEX (f_1)
T := \{ t \mid f_1 \in label(t) \}
while T \neq \emptyset do
choose \ t \in T; \ T := T \setminus \{t\};
for \ all \ s \ such \ that \ R(s,t) \ do
if \ EX \ f_1 \not\in label(s) \ then
label(s) := label(s) \cup \{ \ EX \ f_1 \};
```

```
procedure CheckEU (f_1,f_2)
T := \{ t \mid f_2 \in label(t) \}
for all t \in T do
label(t) := label(t) \cup \{ E(f_1 \cup f_2) \}
while T \neq \emptyset do
choose \ t \in T; \ T := T \setminus \{t\};
for all s such that R(s,t) do
```





#### Procedures for labeling states satisfying $E(f_1Uf_2)$

```
\begin{aligned} &\text{procedure CheckEX } (f_1) \\ &T := \{ \ t \mid f_1 \in \text{label}(t) \ \} \end{aligned} \begin{aligned} &\text{while } T \neq \varnothing \quad \text{do} \\ &\text{choose } t \in T; \quad T := T \setminus \{t\}; \\ &\text{for all s such that } R(s,t) \text{ do} \\ &\text{if EX } f_1 \not \in \text{label}(s) \text{ then} \\ &\text{label}(s) := \text{label}(s) \cup \{ \text{ EX } f_1 \}; \end{aligned}
```

```
procedure CheckEU (f_1,f_2)
T := \{ t \mid f_2 \in label(t) \}
for all t \in T do
label(t) := label(t) \cup \{ E(f_1 \cup f_2) \}
while T \neq \emptyset do
choose \ t \in T; \ T := T \setminus \{t\};
for all s such that R(s,t) do
if \ E(f_1 \cup f_2) \not\in label(s) \ and \ f_1 \in label(s) \ then
label(s) := label(s) \cup \{ E(f_1 \cup f_2) \};
```





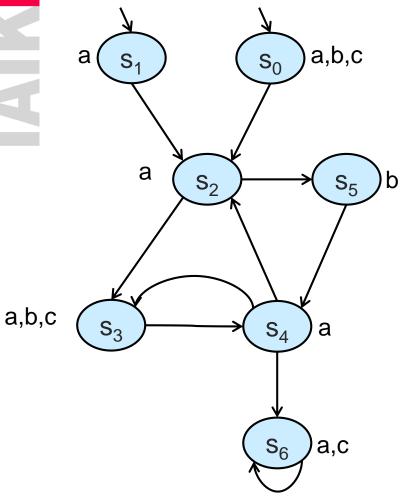
#### Procedures for labeling states satisfying $E(f_1Uf_2)$

```
\begin{aligned} &\text{procedure CheckEX } (f_1) \\ &T := \{ \ t \mid f_1 \in \text{label}(t) \ \} \end{aligned} \begin{aligned} &\text{while } T \neq \varnothing \quad \text{do} \\ &\text{choose } t \in T; \quad T := T \setminus \{t\}; \\ &\text{for all s such that } R(s,t) \text{ do} \\ &\text{if EX } f_1 \not \in \text{label}(s) \text{ then} \\ &\text{label}(s) := \text{label}(s) \cup \{ \text{ EX } f_1 \}; \end{aligned}
```

```
procedure CheckEU (f_1,f_2)
T := \{ t \mid f_2 \in label(t) \}
for all t \in T do
label(t) := label(t) \cup \{ E(f_1 \cup f_2) \}
while T \neq \emptyset do
choose \ t \in T; \ T := T \setminus \{t\};
for all s such that R(s,t) do
if \ E(f_1 \cup f_2) \not\in label(s) \ and \ f_1 \in label(s) \ then
label(s) := label(s) \cup \{ E(f_1 \cup f_2) \};
T := T \cup \{s\}
```







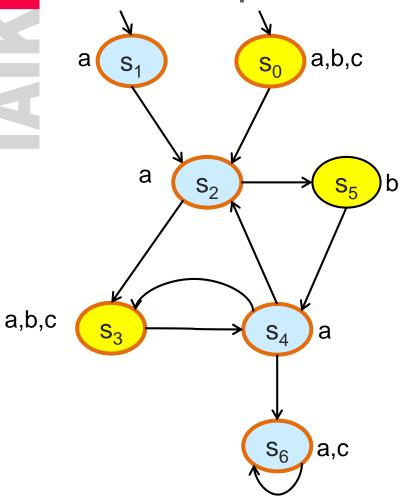
```
Does it hold that M = f?
```

```
• f := E(aUb)
```

```
procedure CheckEU (f_1, f_2)
T := \{ t \mid f_2 \in label(t) \}
for all \ t \in T \ do
label(t) := label(t) \cup \{ E(f_1 \cup f_2) \}
while \ T \neq \emptyset \ do
choose \ t \in T; \ T := T \setminus \{t\};
for \ all \ s \ such \ that \ R(s,t) \ do
if \ E(f_1 \cup f_2) \not\in label(s) \ and \ f_1 \in label(s) \ then
label(s) := label(s) \cup \{ E(f_1 \cup f_2) \};
T := T \cup \{s\}
```







Does it hold that M = f?

• 
$$f := E(aUb)$$

```
procedure CheckEU (f_1, f_2)
T := \{ t \mid f_2 \in label(t) \}
for all t \in T do
label(t) := label(t) \cup \{ E(f_1 \cup f_2) \}
while T \neq \emptyset do
choose \ t \in T; \ T := T \setminus \{t\};
for all s such that R(s,t) do
if \ E(f_1 \cup f_2) \not\in label(s) \ and \ f_1 \in label(s) \ then
label(s) := label(s) \cup \{ E(f_1 \cup f_2) \};
T := T \cup \{s\}
```







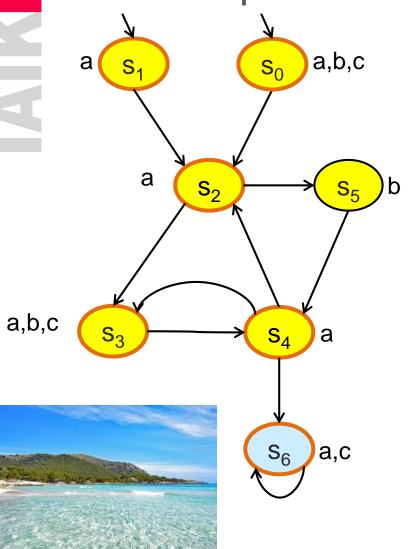
Does it hold that M = f?

• 
$$f := E(aUb)$$

```
procedure CheckEU (f_1, f_2)
T := \{ t \mid f_2 \in label(t) \}
for all t \in T do
label(t) := label(t) \cup \{ E(f_1 \cup f_2) \}
while T \neq \emptyset do
choose t \in T; T := T \setminus \{t\};
for all s such that R(s,t) do
if E(f_1 \cup f_2) \notin label(s) and f_1 \in label(s) then
label(s) := label(s) \cup \{ E(f_1 \cup f_2) \};
T := T \cup \{s\}
```







```
Does it hold that M \models f?

• f := E(aUb)

• M \models E(aUb)

[[E(aUb)]] = {0,3,5,4}
```

```
procedure CheckEU (f_1, f_2)
T := \{ t \mid f_2 \in label(t) \}
for all t \in T do
label(t) := label(t) \cup \{ E(f_1 \cup f_2) \}
while T \neq \emptyset do
choose \ t \in T; \ T := T \setminus \{t\};
for all s such that R(s,t) do
if \ E(f_1 \cup f_2) \notin label(s) \ and \ f_1 \in label(s) \ then
label(s) := label(s) \cup \{ E(f_1 \cup f_2) \};
T := T \cup \{s\}
```





#### **Observation:**

 $s \models EG f_1$ iff

There is a path  $\pi$ , starting at s, such that  $\pi \models G f_1$ 





#### Observation:

 $s \models EG f_1$ iff

There is a path  $\pi$ , starting at s, such that  $\pi \models G f_1$  iff

There is a path from s to a strongly connected component, where all states satisfy f<sub>1</sub>





- A Strongly Connected Component (SCC) in a graph is a subgraph C such that every node in C is reachable from any other node in C via nodes in C
- An SCC C is maximal (MSCC) if it is not contained in any other SCC in the graph
  - Possible to find all MSCC in linear time O(|S|+|R|) (Tarjan)





- Remove from M all states such that f₁ ∉ label(s)
- Resulting model: M' = (S', R', L')
  - $S' = \{ s \mid M, s \models f_1 \}$
  - $R' = (S' \times S') \cap R$
  - L'(s') = L(s') for every  $s' \in S'$





- Remove from M all states such that f₁ ∉ label(s)
- Resulting model: M' = (S', R', L')
  - $S' = \{ s \mid M, s \models f_1 \}$
  - $R' = (S' \times S') \cap R$
  - L'(s') = L(s') for every s' ∈ S'
- Theorem: M,s ⊨ EG f₁ iff
  - 1.  $s \in S'$  and
  - 2. s has a path in M' to some state t in a MSCC of M'





```
procedure CheckEG (f<sub>1</sub>)
 S' := \{s \mid f_1 \in label(s) \}
 MSCC := \{ C \mid C \text{ is a MSCC of } M' \}
 T := \cup_{C \in MSCC} \{ s \mid s \in C \}
 for all t∈T do
     label(t) := label(t) \cup \{ EG f_1 \}
```





```
procedure CheckEG (f<sub>1</sub>)
 S' := \{s \mid f_1 \in label(s) \}
 MSCC := { C | C is a nontrivial MSCC of M' }
 \mathsf{T} := \cup_{\mathsf{C} \in \mathsf{MSCC}} \{ \mathsf{s} \mid \mathsf{s} \in \mathsf{C} \}
 for all t∈T do
     label(t) := label(t) \cup \{ EG f_1 \}
 while T \neq \emptyset do
     choose t \in T; T := T \setminus \{t\};
     for all s \in S' such that R'(s,t) do
          if EG f₁ ∉ label(s) then
               label(s) : = label(s) \cup {EG f<sub>1</sub>};
              T:=T\cup\{s\}
```







#### Steps per Subformula

- MC Atomic Propositions
- MC  $\neg$ ,  $\vee$  formulas
- MC g = EX f<sub>1</sub>
- $\bullet \quad \mathsf{MC} \ g \ = \ E(f_1 U \ f_2)$
- MC  $g = EGf_1$







#### Steps per Subformula

- MC Atomic Propositions
  - O(|S|) steps
- MC ¬, ∨ formulas

MC g = EX f<sub>1</sub>

 $MC g = E(f_1 U f_2)$ 

 $MC_{g} = EGf_{1}$ 







#### Steps per Subformula

- MC Atomic Propositions
  - O(|S|) steps
- MC  $\neg$ ,  $\lor$  formulas
  - O(|S|) steps
- MC g = EX f<sub>1</sub>

 $MC g = E(f_1 U f_2)$ 

•  $MC g = EGf_1$ 





#### Steps per Subformula

- MC Atomic Propositions
  - O(|S|) steps
- MC  $\neg$ ,  $\lor$  formulas
  - O(|S|) steps
- MC g = EX f<sub>1</sub>
  - Add g to label(s) iff s has a successor t such that f₁∈ label(t)
  - O(|S| + |R|)
- $MC g = E(f_1 U f_2)$

 $MC g = EGf_1$ 







#### Steps per Subformula

- MC Atomic Propositions
  - O(|S|) steps
- MC  $\neg$ ,  $\lor$  formulas
  - O(|S|) steps
- MC g = EX f<sub>1</sub>
  - Add g to label(s) iff s has a successor t such that f₁∈ label(t)
  - O(|S| + |R|)
- MC  $g = E(f_1 U f_2)$ 
  - O(|S| + |R|)
- $MC g = EGf_1$







#### Steps per Subformula

- MC  $g = EGf_1$ 
  - Computing M' : O (|S| + |R|)
  - Computing MSCCs using Tarjan's algorithm:
     O(|S'| + |R'|)
  - Labeling all states in MSCCs: O (|S'|)
  - Backward traversal: O (|S'| + |R'|)
  - => Overall: O (|S| + |R|)





#### Steps per Subformula

- MC Atomic Propositions
  - O(|S|) steps
- MC  $\neg$ ,  $\vee$  formulas
  - O(|S|) steps
- MC g = EX f<sub>1</sub>
  - Add g to label(s) iff s has a successor t such that f₁∈ label(t)
  - O(|S| + |R|)
- MC  $g = E(f_1 U f_2)$ 
  - O(|S| + |R|)
- $MCg = EGf_1$ 
  - O(|S| + |R|)





- Each subformula
  - O(|S| + |R|) = O(|M|)
- What is the total complexity for checking f?





- Each subformula
  - O(|S| + |R|) = O(|M|)
- Number of subformulas in f:
  - O(|f|)
- Total
  - O(|M| × |f|)



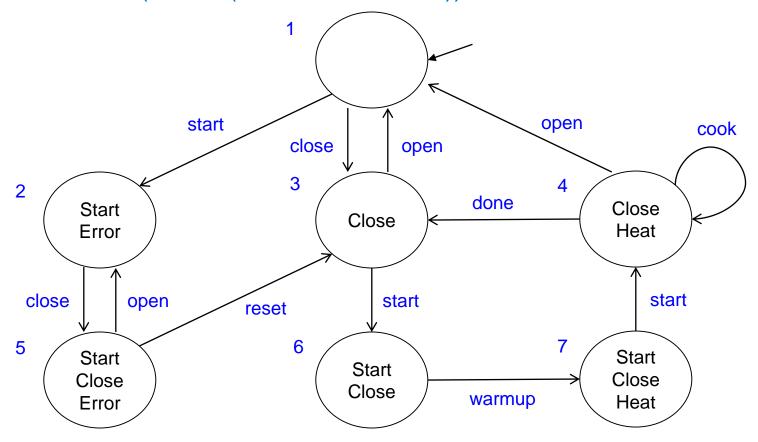
■ Complexity of MC for LTL and CTL\* is O( |M| × 2|f| )





### Microwave Example

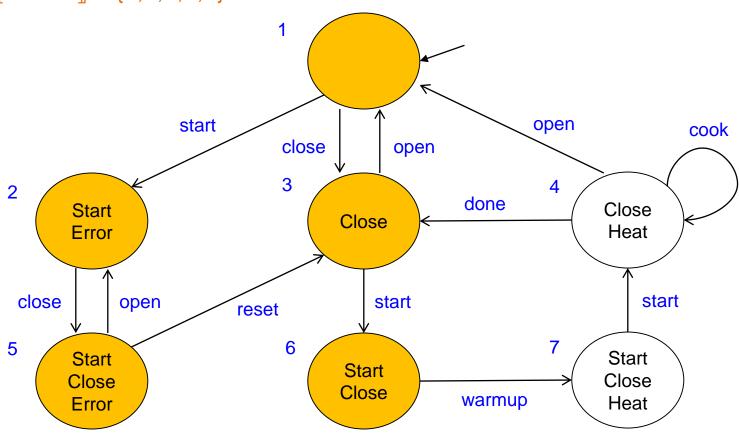
- Use the proposed algorithm to compute if M ⊨ f?
  - f := ¬E (true U (Start ∧ EG ¬Heat))





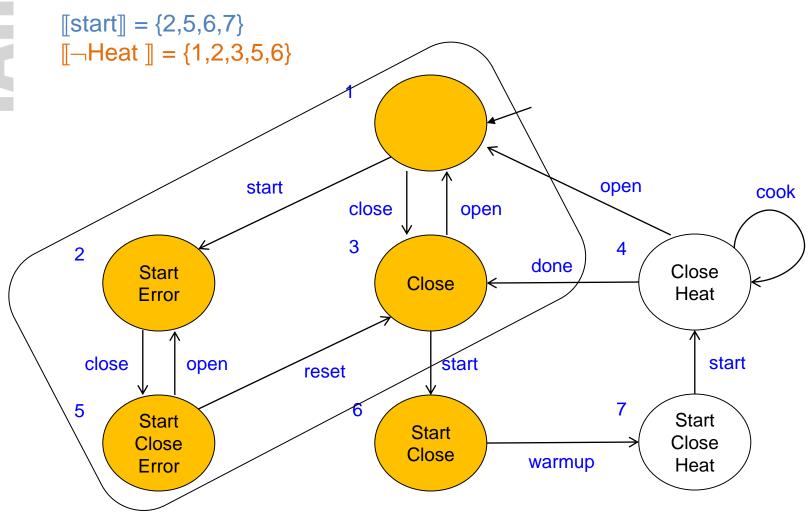


 $[start] = \{2,5,6,7\}$  $[\neg Heat] = \{1,2,3,5,6\}$ 



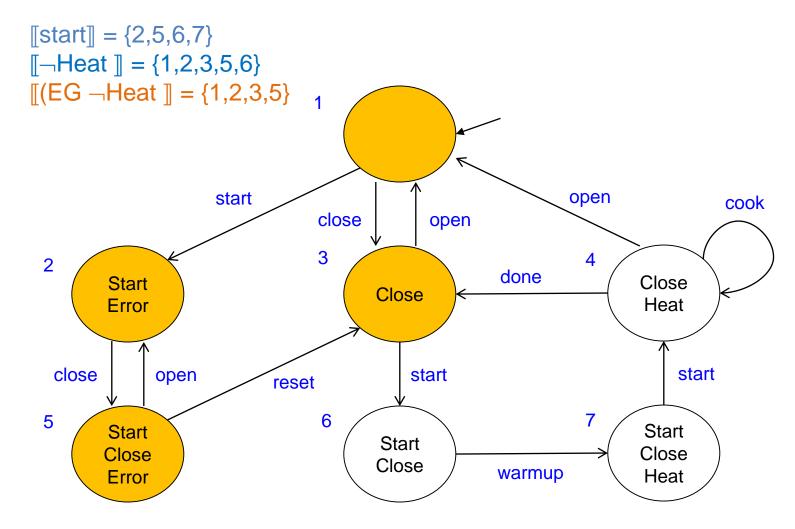












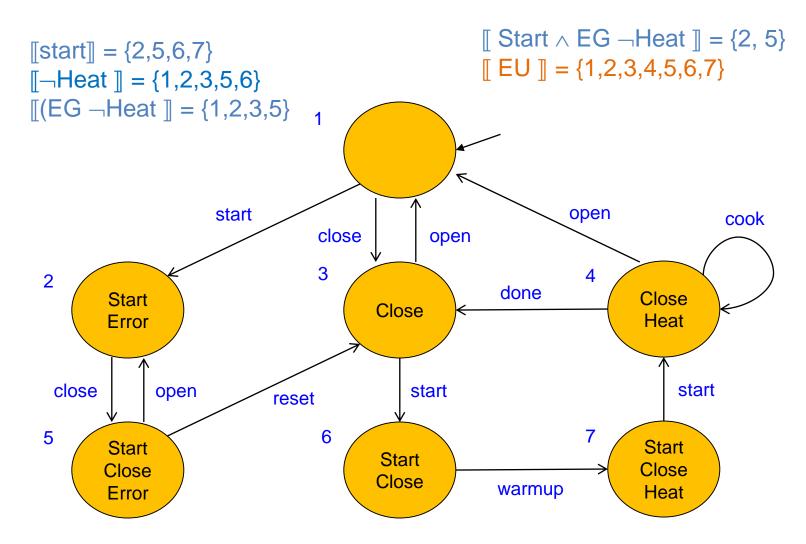




 $\|$  Start  $\wedge$  EG  $\neg$ Heat  $\|$  = {2, 5}  $[start] = \{2,5,6,7\}$  $[-Heat] = \{1,2,3,5,6\}$  $[(EG \neg Heat]] = \{1,2,3,5\}$ start open cook close open 3 4 2 done Close Start Close **Error** Heat close start start open reset 5 6 Start Start Start Close Close Close warmup Error Heat



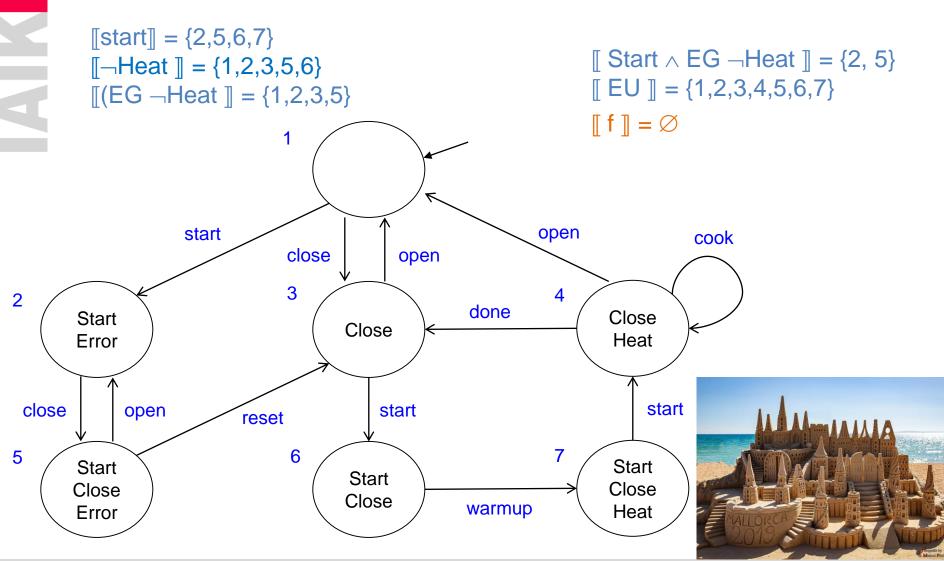








Secure & Correct Systems









SCOS
Secure & Correct Systems