—
- -
- “s.
,
.
— -
-

R)
T2 e L
s ‘ . 22

Cryptographic Engineering:
Random Number Generation

October 2021

Sujoy Sinha Roy
sujoy.sinharoy@iaik.tugraz.at -!E-I“E!l

mailto:sujoy.sinharoy@iaik.tugraz.at

1. Choose two large primes randomly: p and g
2. Modulus: m=p *q
3. Public key:
e = random co-prime to ¢(m) = (p-1) * (9-1)

4. Private key:
d = e mod ¢(m)

Crypto protocols need randomness

Example: The RSA Key Generation Algorithm:

1. Choose two large primes randomly: p and g
2. Modulus: m=p *q
3. Public key:
e = random co-prime to ¢(m) = (p-1) * (g-1)

4. Private key:
d = e mod ¢(m)

How do we generate high quality randomness for crypto?

rand() function in C

int main(){

int rand_buffer[N]

for (intj=0; j<N; j++)

' ?
rand_buffer[j] = rand(): Is this secure”

do_cryptography(rand_buffer);

rand() and srand() functions in C

iInt main(){

int rand_buffer[N]
srand(time(NULL)); // randomize seed Is this secure?

for (intj=0;j<N; j++)
rand_buffer[j] = rand();

do_cryptography(rand_buffer);

Problems with C rand()

1. Produces pseudorandom sequences of not long-enough cycle.
R = Qe REs DI > Can produce a maximum of 232 random integers only

DESCRIPTION
The rand() function returns a pseudo-random integer in the range
%) to RAND_MAX inclusive (1.e., the mathematical range
[0, RAND_MAX]).

Source: man page of srand

2. The number of possible seeds is 232 only.

void srand(unsigned int seed) ;NSRS

3. Legacy rand() function implementations produced much less
randomness for the low-order bits.

Attacks exploiting weak randomness

Cryptanalysis of the Random Number Generator of the Windows
Operating System

Leo Dorrendorf
School of Engineering and Computer Science
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
dorrel@cs.huji.ac.il

Zvi Gutterman Benny Pinkas*
School of Engineering and Computer Science Department of Computer Science
The Hebrew University of Jerusalem University of Haifa
91904 Jerusalem, Israel 31905 Haifa, Israel
zvikag@cs.huji.ac.il benny@pinkas.net

November 4, 2007

Abstract

The pseudo-random number generator (PRNG) used by the Windows operating system is
the most commonly used PRNG. The pseudo-randomness of the output of this generator is
crucial for the security of almost any application running in Windows. Nevertheless, its exact
algorithm was never published.

Attacks exploiting weak randomness

Ebe New York Times

Flaw Found in an Online Encryption
Method

o » (] Lenstra, Hughes, Augier, Bos, Kleinjung,
By John Markoff and Wachter were able to factor 0.2% of
Feb. 14, 2012 deployed RSA keys using simple Euclid’s

SAN FRANCISCO — A team of European and American algorlth m.

mathematicians and cryptographers have discovered an
unexpected weakness in the encryption system widely used
worldwide for online shopping, banking, e-mail and other Internet
services intended to remain private and secure.

The flaw — which involves a small but measurable number of
cases — has to do with the way the system generates random
numbers, which are used to make it practically impossible for an
attacker to unscramble digital messages. While it can affect the

How to generate random numbers for cryptography?

In Unix-based OS, you get high-entropy randomness by reading
/dev/random or /dev/urandom files.

- These files collect noise from the environment (e.g., device driver noise,
mouse movements, key-board timings, etc.)

E.g., reading 10 random bytes from /dev/random

A C -n 10 /dev/random

P0000PRO 8c 31 12 e7 a5 31 e6 a3 af f9
00000B00a

void randombytes(uint8_t *out, size t outlen) {
static int fd = -1;
ssize tret;

while(f) {
fd = open("/dev/urandom”, O_RDONLY);

if(fd == -1 && errno == EINTR)
continue;

elseif(fd == -1)
abort();

}

while(outlen > 0) {
ret = read(fd, out, outlen);
if(ret && errno == EINTR)
continue;
else if(ret ==-1)
abort();

out +=ret;
outlen -=ret;

}
}

Code source:

Example: Reading random bytes from

/dev/urandom inside a C function.

https://github.com/pg-crystals/kyber/blob/master/ref/randombytes.c

RDRAND and RDSEED instructions on new Intel processors

* These two instructions return random numbers from an on-chip
Random Number Generator (RNG).

ﬁ—w > RNG ——» RDRAND produces a ‘random number

— RDSEED produces a ‘seed’

« RDSEED is used to produce a high-entropy ‘seed’. This seed is can be
used to initialize any Pseudo Random Number Generator algo.

« RDRAND is used for generating many random numbers by using a
deterministic-RNG with a random seed. The seed is changed periodically.

RDRAND and RDSEED intrinsics for gcc

int _rdrand16_step(uintl6 t*); Int _rdseed16_step(uintl6 t*);
int _rdrand32_step(uint32_t*); Int _rdseed32_step(uint32_t*);
int _rdrand64_step(uint6£1;_t*); int _rdseed64_step(u/ir3t64_t*);

\/

Pointer to the uintXX t where the number/seed will be stored.

The functions return 1 when they succeed in generating a random number/seed.
Otherwise they return a different value.

Example C code: RDRAND and RDSEED

#include <stdio.h> #include <stdio.h>

#include <immintrin.h> #include <immintrin.h>

int main() { int main() {
unsigned long long result = OULL; unsigned long long result = OULL,;
int rc = _rdrand64_step (&result); Int rc = _rdseed64_step (&result);
printf("%i %llu\n", rc, result); printf("%i %llu\n", rc, result);
return (rc !'=1); return (rc !'=1);

} }

Compilation command: Compilation command:

gcc -m64 -mrdrand <filename>.c gcc -m64 -mrdseed <filename>.c

Security ‘debates’ regarding RDRAND/RDSEED

Ehe New YJork Times .
e Theodore Ts'o » Public Sep 5,2013 ¢

NS.A. Ab’e to Foil Basic Safeguards I am so glad | resisted pressure from Intel engineers to let /dev/random rely only
. on the RDRAND instruction. To quote from the article below:
of Privacy on Web
"By this year, the Sigint Enabling Project had found ways inside some of the
D & 6 6 & D @ encryption chips that scramble information for businesses and governments,
either by working with chipmakers to insert hack doors...."

By Nicole Perlroth, Jeff Larson and Scott Shane i) .)
Relying solely on the hardware random number generator which is using an

Sept. 5,2013 implementation sealed inside a chip which is impossible to audit is a BAD idea.

The National Security Agency is winning its long-running secret

war on encryption, using supercomputers, technical trickery, court sed 10- . N.S.A. Foils Much Internet Encryption
orders and behind-the-scenes persuasion to undermine the major - w\ner:\b‘ﬂi?tcd'- nytimes.com

tools protecting the privacy of everyday communications in the ;gon‘:' devices use

Internet age, according to newly disclosed documents. ollect target netwo

The agency has circumvented or cracked much of the encryption, » networks:
or digital scrambling, that guards global commerce and banking

systems, protects sensitive data like trade secrets and medical B 26 #1626 < 7

records, and automatically secures the e-mails, Web searches,

https://web.archive.org/web/20180611180213/https://plus.google.com/117091380454742934025/
posts/SDcoemc9V3J

Next part: How to design your own True-RNG in HW?

Classification of Random Number Generators

Random number generators (RNG) can be classified into two main types.

1. True Random Number Generator (TRNG)
« Also known as non-deterministic RNG
 Produces true random numbers
« Source of randomness: unpredictable processes

2. Pseudo Random Number Generator (PRNG)
« Also known as deterministic RNG

« Expands a short seed into a long string using a deterministic algo.
 Does not produce any *new* randomness

We will mainly discuss implementations of TRNGs

Design and Analysis of TRNGs

High-level diagram of TRNG

Digital Noise Source 'Raw Random Numbers

(Digital o/p)

LGN Aveiog o |

__

1. Entropy source is the component where unpredictable physical processes run.
« There are different types of physical processes that can be used
« Combination of them is also possible
* Produces time-continuous analog output

2. Digitization is the component that samples analog output of the entropy source.
* Produces binary bits
« Sampling frequency influences the quality of randomness

Different Entropy Sources for TRNGs

1. Thermal noise

2. Timing jitter » We will study this type of TRNGs.
3. Quantum effect
4. Metastability

5. ... any combination of them

Entropy Sources: Thermal Noise

« Generated by the thermal agitation of the charge carriers inside
an electrical conductor = Present in all electronic devices

* Noise source is modelled as a ‘current source’ in parallel to a resistor

. #4kBTAf
bn = R

where kg Is Boltzmann’s constant, T is absolute temperature, R is
resistor value, and Af is bandwidth over which noise iIs measured.

Noiseless resistor

W

-

—/

Moise current

Entropy Sources: Thermal Noise TRNG

Noiseless
resistor

Eg":l—)l Amplifier |—)| Digitization I—)

12, JAf = 4kpT/R

Image source: PhD thesis of B. Yang.

 Thermal noise over a resistor is first amplified

« Amplified noise is used to drive a Voltage Controlled Oscillator (VCO)
« Output of VCO is sampled (i.e., digitized) to produce random bits

« This kind of TRNGs are suitable for ASIC platforms

« Example: First proposed by Intel in [JK99]

[JK99] B. Jun, and P. Kocher. “The Intel Random Number Generator”. White paper prepared for the Intel Corporation (1999).

Entropy Sources: Quantum TRNG

raw random
numbers

Digitization

oo | 'A

Photons pass through a balanced beam splitter with equal transmissivity

and reflectivity, and reach one of these two detectors. The results are encoded
to the raw random numbers using digitization.

Photon source: Laser or Light emitting diode

There are commercially available ASIC chips of this type of TRNG.

Entropy Sources: Timing Jitter

... we study this type of entropy source in detail

Y B W A U A U A

What do we call this waveform?
We call it the ‘clock’ in digital circuits

Actually it is an ideal clock

Ideal clock: All cycles are of fixed and equal length

variation

f‘1

Real clock: Cycle lengths change

Timing Jitter is the deviation from true periodicity of a periodic signal.

How to use (random) jitter to produce true random numbers?

1. The first step will be to create a periodic clock signal.
2. Next, sample from the fjitter’ region of the periodic signal.

3. Finally, digitize sampled values to produce random bits.

o

This is an inverter, e.g., a NOT gate

-

What happens with this configuration?

Answer: The output oscillates.
—->0->1->0->1 ... and so on in a periodic manner

Ring Oscillator (RO)

e P o

Any odd n number of inverters chained in a ring (i.e., a loop)

o

Special case withn =1

As n is odd, the output oscillates
... 202>1->0->1 ... and so on in a periodic manner

The average period is determined by the delay and number of inverter(s).

Why do we see Jitter in a Ring Oscillator?

Delay of each logic element has two components:
1. a fixed component
2. and a variable component

The variable component is due to various noise sources in the device

Global noise from the power supply
Environmental noise (e.g., temperature, humidity, etc.)
Correlated noise (e.g., flicker noise, telegraph noise)

White noise, also known as Gaussian noise

Why do we see Jitter in a Ring Oscillator?

Delay of each logic element has two components:
1. a fixed component
2. and a variable component

The variable component is due to various noise sources in the device

« Global noise from the power supply

« Environmental noise (e.g., temperature, humidity, etc.) —
Deterministic

« Correlated noise (e.g., flicker noise, telegraph noise)

=

« White noise, also known as Gaussian noise —— Used for TRNG

Jitter in Ring Oscillator

The (variable) period of a ring oscillator is given by

\ \

Tro =Tt T+t Teg+T

corr T TGauss — S \ / W/ \

| . Only this component is presumed
to be non-deterministic

Where

T, : average period of the RO

T @ contribution from global noise

Te : Contribution from environmental noise
T, - Contribution from correlated noise
Tsauss - Contribution from Gaussian noise

From jitter to random bits

The transition region of RO output is unpredictable due to jitter.

-

Jitter
o

« Sample the output of RO in this unpredictable region
« Digitize the sampled value to get a random bit. |

o

Due to jitter, trahsition from 0->1 Due to jitter, transition from 0>1
happens after the sampling point. happens before the sampling point.
Hence, 0 is sampled. Hence, 1 is sampled.

Sampling jitter

Output of RO

Sampling clock

Sampling clk

a
»

always @(posedge sampling_clk)
D_ff <= RO _out_bit;

Verilog snippet for sampling

Such an implementation will work only if posedge transitions of the sampling
clock coincide with the jitter regions of the RO output.

=>» Sampling clock are RO output must be in the same phase.

=>» Sampling clock can be output of another RO

Practical problems with sampling jitter
The previous configuration for sampling jitter does not work in practice.

« Exactly synchronizing two oscillating signals is very difficult to implement
on digital platforms as that requires a special layout

« Moreover, with time two signals may drift from each other due to their own
jitter and noises in the system.

https://www.istkpo.com/de/fooglsynchronized-skydiving

Solving the practical problem of sampling jitter

Cause of failure: The previous approach fails because width of the
nondeterministic region is really small w.r.t deterministic region
- Hence, sampling from deterministic region occurs with higher probability

T~

Example: 94% is deterministic

3% is non-deterministic

Solving the practical problem of sampling jitter

Improve success rate: Increase nondeterministic region compared to
deterministic region
- Combine jitter from multiple ROs

RO1 ‘H

RO |

The % of nondeterministic
I I_I I I I region has increased

Cdmﬁined jitter froh two ROs
(Only positive edge transitions are shown)

Solving the practical problem of sampling jitter

When combining multiple ROs, there are two main questions:
1. How many ROs should be combined?

2. What periods should they have?

Sampling jitter using co-prime ROs

Potential idea: Use many ROs of co-prime periods, i.e., co-prime ring length.
- Hence, their fjitters’ will not overlap for long durations

Example: ROs of length 3, 5, 7, 11, ...

oo | LI IANLAA0AL AL

—{>o_{>q_{>e_(>9_{>g_{>a_{>r_4 Jitters from co-prime ROs
| 1 (Only positive edge transitions are shown)

(Different color for different length)

Sampling jitter using co-prime ROs: Practical issues

Assumption of non-overlapping jitter doesn’t hold due to random phase-drift
and RO-to-RO coupling effects = There will be overlaps more frequently

Ring lengths increase dramatically = Area increases
Ring lengths satisfying co-prime and odd: 1, 3, 5, 7, 11, 13, 17, 19, 23, ...,

Sampling jitter using co-prime ROs: Practical issues
« Assumption of non-overlapping jitter doesn’t hold due to random phase-drift
and RO-to-RO coupling effects = There will be overlaps more frequently

* Ring lengths increase dramatically = Area increases
Ring lengths satisfying co-prime and odd: 1, 3, 5, 7, 11, 13, 17, 19, 23, ...,

Summary:
Enhancing jitter using Co-prime ROs is flawed and is not used in practice.

RO-based TRNGs use all ROs of the same length.
- Due to random phase-drifts, their jitter-regions get spread across.
- Implementation becomes easier.

Question: How many ROs should be used to ensure quality?

The Urn Model [SMSO07]

Let there are N urns.

How many balls do we need to throw to fill all urns with high probability?

YIYYIIYY

This problem is knows as the ‘Coupon Collector Problem’.
Expected number of balls:

N
r—Z;f—NZi::NlogN
s— s=—1

[SMS07] B. Sunar, W.J. Martin, and D.R. Stinson. “A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks”.
IEEE Trans. on Comp., Vol. 56, No. 1, 2007.

Apply Urn Model to calculate number of ROs

» time
1:0 t1

Time interval where we want to sample jitter

Apply Urn Model to calculate number of ROs

» time
1:0 t1

Time interval where we want to sample jitter

The goal will be to fill this interval with ‘transitions’ (jitter) of RO outputs,
such that any sampling point t falls within a ‘transition’ with high probability.

Apply Urn Model to calculate number of ROs

\AAAAAAL

— ——— > time
1:0 t1

Time interval where we want to sample jitter

The goal will be to fill this interval with ‘transitions’ (jitter) of RO outputs,
such that any sampling point t falls within a ‘transition’ with high probability.

- The interval is discretized by splitting it into N ‘urns’ of equal width.

Apply Urn Model to calculate number of ROs

\AAAAAALI

— ——— > time
1:0 t1

Time interval where we want to sample jitter

The goal will be to fill this interval with ‘transitions’ (jitter) of RO outputs,
[such that any sampling point t falls within a ‘transition’ with high probability.

- The interval is discretized by splitting it into N ‘urns’ of equal width.
—> Try to fill most of these urns with transition regions from ROs

N N
N 1
Expected number of Ros: r = E L= N E oF Nlog N
s=1 s=1

How to decide the
number (N) of urns?

Summary so far

 Jitter of ring oscillator (RO) is unpredictable
—> can be used to generate true random bits
 We need to combine jitter from many ROs to increase unpredictability
« ROs will be of equal ring-length
« Expected number of ROs can be derived using the Urn Model,
Number of Ros: rill: NZN:% ~ Nlog N
- p

where N is the number of urns.

* Next question: How to calculate the number of urns i.e., N?

Calculating the number of urns

« As all ROs are of the same length, they have the same average period T.

o Jitter-width follows a Gaussian distribution with some standard deviation o.

1
1
]
'
I

Period =T

» Time

Timing behaviour of one RO

« We split each time-interval of width T into N urns.
Hence, width of each urn = T/N

Calculating the number of urns

Let jitter be a Gaussian distribution of mean p and standard deviation o.
Entropy in urn is related to urn-width.

A

H-06990 | p+0.6990

)
Urn width = 2 x 0.6990
A sample here has entropy 0.80.

v

H-03350 | p+0.3350

Urn width = 2 x 0.3350
A sample here has entropy 0.95.

v

Calculating the number of urns

0.99
0.97
0.95
0.90
0.80
0.50

2 x 0.1450
2 x 0.2580
2 x 0.3350
2x0.4790
2 x 0.6990
2 x1.2290

Entropy vs urn-width

Narrower the urn,
higher the entropy is.

1. Urn-width w =2 x 0.6990

Typically o is about 2% of the period T.
—~>Hence to achieve entropy 0.80, we need N = 36. > Number of RO = 151

2. Thus, the number of urns N =T/w =T/1.3980

Example: If we want that the generated random numbers have entropy ~0.80, then

Summary so far

Jitter of ring oscillator (RO) is unpredictable

—> can be used to generate true random bits

We need to combine jitter from many ROs to increase unpredictability
ROs will be of equal ring-length

Expected number of ROs can be derived using the Urn Model,

NN Vo1
Number of ROs: r:Z?:NZ;::lVlogN
s=1 s=1

where N is the number of urns.

#Urns N = T/(2 x e x g) where factor e depends on desired entropy

This gives us a formal model to estimate the number of ROs.

\AAAAALA;

I 51

» time

So far, we have computed the expected number of ROs that we need to
fill all the N urns.

—> Filling all the urns require a large number of ROs.

... relaxing the urn-filling condition

\AAAAAALS

- » time
1:0 t1

So far, we have computed the expected number of ROs that we need to
fill all the N urns.

—> Filling all the urns require a large number of ROs.

The number of ROs can be reduced significantly if we aim for

a lower filling rate f < 1.

E.g., with f = 0.7 we have a 70% chance that the sampled value comes from
jitter and 30% chance that it comes from deterministic values.

Example: Expected number of ROs with filling rate f=0.7

Let’'s assume that there are N=100 urns.
With f = 0.7 we expect :

e 70 urns will contain jitter and
» the remaining 30 will contain deterministic values.

The expected number of ROs will be:

r=100-%" 1/s =120

Summary of the ‘Urn model’ (1)

1. You aim for a level of entropy and
2. and choose a proper width for the urns.

r
/PN
v,/"/' _,""’- A

) ,
/

p-0699c | p+0.6990
(S
Urn width = 2 x 0.6990
A sample here has entropy 0.80.

v

M- 0.335c p +0.3350

Urn width =2 x 0.3350
A sample here has entropy 0.95.

Jitter has a Gaussian distribution

Summary of the ‘Urn model’ (2)

3. |If possible, calculate the % of jitter for a RO on the target platform
—> Measuring jitter requires a special circuit (not covered in this lecture)

4. Otherwise, choose the standard deviation of jitter o to be 1% or 2%
of the overall RO period.

5. Now, calculate
#Urns N = T/(2 x e x g) where factor e depends on desired entropy

Summary of the ‘Urn model’ (3)
6. Expected number of ROs to fill all the urns (i.e., f = 1) with jitter

N A
r;:N;;:::NlogN
7. If we aim for a lower fill rate f <1 then the expected number of urns

r = NZ—

(1-AN°

8. In practice, you will need more ROs to have more ‘confidence’.

9. With f<1 we reduce the number of ROs at the cost of quality.
To compensate the loss in quality, we need to generate more random
bits and then perform data compression (will be discussed next week).

Implementation of RO-based TRNG

 RO-based TRNGs are popular and there are several ways of implementing them.

» We will cover only a few of them in this course.

General structure of RO-TRNG

__

| RO 1
Entropy : XOR
Source : Tree "D Qf— kF)Qi?ndom
' RO n
— :>
RO .| Frequency b flip-flop
Sampling Divider Sampling ‘clock’

« The XOR-tree is a balanced arrangement of XOR gates with depth log(n).
It accumulates transitions from all the n ROs.

« Sampling clock for the D-FF is generated from another RO and divided to
obtain a much slower sampling frequency.

Example of balanced XOR Tree

In-1
In-2

In-3
In-4

In-5
IN-6

In-7
In-8

8 input XOR tree with depth 3

Frequency divider
There are several ways of implementing a frequency divider.

« On FPGAs you have dedicated on-chip ‘Phased Locked Loop’ (PLL) IPs.

« To divide the clock by a power-of-2, then the easiest option is to use a
cascade of D-FFs. Each D-FF divides its input clock by 2.

L 4

D Q clockl S

clockl =——P Q » clock?2

Il Clock divider-by2 in Verilog
always @ (posedge clockl)
clock2 <= ~clock2;

—_ clock2 — I

RO-based TRNG of [SPVO06] (1)

length ! » Uses ROs of identical length.

e

| oo Doy The k outputs are XOR-ed

using a balanced XOR-tree
to produce a single bit.

e ! oo o

. nit) D-type s[1]

|‘ ﬂip'Tﬂop « The bit is sampled in a D-FF
e Do using a system clock of
: clock (Js) frequency f..

Image source [SPV06].

The authors performed various experimentations to determine | and k.

[SPV06] D. Schellekens, B. Preneel, I. Verbauwhede. "FPGA Vendor Agnostic True Random Number Generator”. IEEE FPL 2006.

RO-based TRNG of [SPVO06] (2)

Number of ROs for different fill-rate (f) and jitter-width

jitter/ fill rate f

period | 0.50 0.55 0.60 0.65 0.70 075 0.80 0.85 090 0.95
4% 45 53 59 70 79 04 107 133 158 231
2% 83 96 10y 127 146 169 198 236 292 393
1% 158 182 210 =241 277 320 374 445 548 733

Image source [SPVO06].

The authors used all ROs of length | = 3.

These two are Implemented

Noise source Number of ROs | Resources: #Slices on
Xilinx Virtex 2 platform

Minimal 110 565

Robust 210 973

The D-FF is sampled at 40 MHz clock frequency.

RO-based TRNG: Better jitter sampling [WTO08]

[SPVO06] 'WTO8]
e e e
H\h

oo Dol b

A =) =
[[[SetuB-HoId

violations L{> P> s
~ Non-deterministic) Non-deterministic Deterministic

In [SPVO06] there are too many transitions at the input of the D-FF.
- Causes setup and hold time violations for the D-FF.

Better approach [WTO08]: Sample transitions of individual ROs first and then XOR them.
- Uncertainty is captured in the first layer of D-FFs, and then accumulated in a
deterministic way in the output D-FF.

[WTO08] K. Wold, and C.H. Tan. "Analysis and Enhancement of Random Number Generator in FPGA Based on Oscillator Rings".

References

[JK99] B. Jun, and P. Kocher. “The Intel Random Number Generator”. White paper prepared for
the Intel Corporation (1999).

[SMSO07] B. Sunar, W.J. Martin, and D.R. Stinson. “A Provably Secure True Random Number
Generator with Built-In Tolerance to Active Attacks”. IEEE Trans. on Comp., Vol. 56, No. 1, 2007.

[Yang18] B. Yang, "True Random Number Generators for FPGAs," PhD thesis, KU Leuven, 154
pages, 2018. https://www.esat.kuleuven.be/cosic/publications/thesis-307.pdf

[Rozic16] V. Rozic, "Circuit-Level Optimizations for Cryptography,” PhD thesis, KU Leuven, 220
pages, 2016. https://www.esat.kuleuven.be/cosic/publications/thesis-286.pdf

[SPV06] D. Schellekens, B. Preneel, I. Verbauwhede. "FPGA Vendor Agnostic True Random
Number Generator". IEEE FPL 2006. DOI: 10.1109/FPL.2006.311206

[WTO08] K. Wold, and C.H. Tan. "Analysis and Enhancement of Random Number Generator in
FPGA Based on Oscillator Rings". Reconfigurable Computing and FPGAs, 2008.

https://www.esat.kuleuven.be/cosic/publications/thesis-307.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-286.pdf

