
October 2021

Sujoy Sinha Roy
sujoy.sinharoy@iaik.tugraz.at

Cryptographic Engineering:
Random Number Generation

mailto:sujoy.sinharoy@iaik.tugraz.at

1. Choose two large primes randomly: p and q

2. Modulus: m = p * q

3. Public key:

e = random co-prime to ɸ(m) = (p-1) * (q-1)

4. Private key:

d = e-1 mod ɸ(m)

Crypto protocols need randomness

Example: The RSA Key Generation Algorithm:

1. Choose two large primes randomly: p and q

2. Modulus: m = p * q

3. Public key:

e = random co-prime to ɸ(m) = (p-1) * (q-1)

4. Private key:

d = e-1 mod ɸ(m)

How do we generate high quality randomness for crypto?

rand() function in C

int main(){

....

int rand_buffer[N]

for (int j = 0; j < N; j++)

rand_buffer[j] = rand();

do_cryptography(rand_buffer);

...

}

Is this secure?

rand() and srand() functions in C

int main(){

....

int rand_buffer[N]

srand(time(NULL)); // randomize seed

for (int j = 0; j < N; j++)

rand_buffer[j] = rand();

do_cryptography(rand_buffer);

...

}

Is this secure?

Problems with C rand()

1. Produces pseudorandom sequences of not long-enough cycle.

2. The number of possible seeds is 232 only.

3. Legacy rand() function implementations produced much less

randomness for the low-order bits.

Source: man page of srand

→Can produce a maximum of 232 random integers only

Type is ‘int’.

Attacks exploiting weak randomness

Attacks exploiting weak randomness

Lenstra, Hughes, Augier, Bos, Kleinjung,

and Wachter were able to factor 0.2% of

deployed RSA keys using simple Euclid’s

algorithm.

How to generate random numbers for cryptography?

In Unix-based OS, you get high-entropy randomness by reading

/dev/random or /dev/urandom files.

E.g., reading 10 random bytes from /dev/random

→ These files collect noise from the environment (e.g., device driver noise,

mouse movements, key-board timings, etc.)

void randombytes(uint8_t *out, size_t outlen) {

static int fd = -1;

ssize_t ret;

while(fd == -1) {

fd = open("/dev/urandom", O_RDONLY);

if(fd == -1 && errno == EINTR)

continue;

else if(fd == -1)

abort();

}

while(outlen > 0) {

ret = read(fd, out, outlen);

if(ret == -1 && errno == EINTR)

continue;

else if(ret == -1)

abort();

out += ret;

outlen -= ret;

}

}

Code source: https://github.com/pq-crystals/kyber/blob/master/ref/randombytes.c

Example: Reading random bytes from

/dev/urandom inside a C function.

RDRAND and RDSEED instructions on new Intel processors

• These two instructions return random numbers from an on-chip

Random Number Generator (RNG).

• RDSEED is used to produce a high-entropy ‘seed’. This seed is can be

used to initialize any Pseudo Random Number Generator algo.

• RDRAND is used for generating many random numbers by using a

deterministic-RNG with a random seed. The seed is changed periodically.

True

RNG

Deterministic

RNG

RDSEED produces a ‘seed’

RDRAND produces a ‘random number’
Conditi-

oner

RDRAND and RDSEED intrinsics for gcc

int _rdrand16_step(uint16_t*);

int _rdrand32_step(uint32_t*);

int _rdrand64_step(uint64_t*);

int _rdseed16_step(uint16_t*);

int _rdseed32_step(uint32_t*);

int _rdseed64_step(uint64_t*);

The functions return 1 when they succeed in generating a random number/seed.

Otherwise they return a different value.

Pointer to the uintXX_t where the number/seed will be stored.

Example C code: RDRAND and RDSEED

#include <stdio.h>

#include <immintrin.h>

int main() {

unsigned long long result = 0ULL;

int rc = _rdrand64_step (&result);

printf("%i %llu\n", rc, result);

return (rc != 1);

}

#include <stdio.h>

#include <immintrin.h>

int main() {

unsigned long long result = 0ULL;

int rc = _rdseed64_step (&result);

printf("%i %llu\n", rc, result);

return (rc != 1);

}

Compilation command:

gcc -m64 -mrdseed <filename>.c

Compilation command:

gcc -m64 -mrdrand <filename>.c

Security ‘debates’ regarding RDRAND/RDSEED

https://web.archive.org/web/20180611180213/https://plus.google.com/117091380454742934025/

posts/SDcoemc9V3J

Next part: How to design your own True-RNG in HW?

Classification of Random Number Generators

Random number generators (RNG) can be classified into two main types.

1. True Random Number Generator (TRNG)

• Also known as non-deterministic RNG

• Produces true random numbers

• Source of randomness: unpredictable processes

2. Pseudo Random Number Generator (PRNG)

• Also known as deterministic RNG

• Expands a short seed into a long string using a deterministic algo.

• Does not produce any *new* randomness

We will mainly discuss implementations of TRNGs

Design and Analysis of TRNGs

Entropy

Source
Digitization

Digital Noise Source
Raw Random Numbers

(Digital o/p)

High-level diagram of TRNG

1. Entropy source is the component where unpredictable physical processes run.

• There are different types of physical processes that can be used

• Combination of them is also possible

• Produces time-continuous analog output

2. Digitization is the component that samples analog output of the entropy source.

• Produces binary bits

• Sampling frequency influences the quality of randomness

Analog o/p

Different Entropy Sources for TRNGs

1. Thermal noise

2. Timing jitter

3. Quantum effect

4. Metastability

5. … any combination of them

We will study this type of TRNGs.

Entropy Sources: Thermal Noise

• Generated by the thermal agitation of the charge carriers inside

an electrical conductor → Present in all electronic devices

• Noise source is modelled as a ‘current source’ in parallel to a resistor

where kB is Boltzmann’s constant, T is absolute temperature, R is

resistor value, and Δf is bandwidth over which noise is measured.

Entropy Sources: Thermal Noise TRNG

Image source: PhD thesis of B. Yang.

• Thermal noise over a resistor is first amplified

• Amplified noise is used to drive a Voltage Controlled Oscillator (VCO)

• Output of VCO is sampled (i.e., digitized) to produce random bits

• This kind of TRNGs are suitable for ASIC platforms

• Example: First proposed by Intel in [JK99]

[JK99] B. Jun, and P. Kocher. “The Intel Random Number Generator”. White paper prepared for the Intel Corporation (1999).

Entropy Sources: Quantum TRNG

Photons pass through a balanced beam splitter with equal transmissivity

and reflectivity, and reach one of these two detectors. The results are encoded

to the raw random numbers using digitization.

Photon source: Laser or Light emitting diode

There are commercially available ASIC chips of this type of TRNG.

Entropy Sources: Timing Jitter

… we study this type of entropy source in detail

What do we call this waveform?

We call it the ‘clock’ in digital circuits

Actually it is an ideal clock

Real clock: Cycle lengths change

Ideal clock: All cycles are of fixed and equal length

Timing Jitter is the deviation from true periodicity of a periodic signal.

variation

How to use (random) jitter to produce true random numbers?

1. The first step will be to create a periodic clock signal.

2. Next, sample from the ‘jitter’ region of the periodic signal.

3. Finally, digitize sampled values to produce random bits.

This is an inverter, e.g., a NOT gate

What happens with this configuration?

Answer: The output oscillates.

→0→1→0→1 … and so on in a periodic manner

Ring Oscillator (RO)

Any odd n number of inverters chained in a ring (i.e., a loop)

Special case with n = 1

Output

As n is odd, the output oscillates

… →0→1→0→1 … and so on in a periodic manner

The average period is determined by the delay and number of inverter(s).

Why do we see Jitter in a Ring Oscillator?

Delay of each logic element has two components:

1. a fixed component

2. and a variable component

The variable component is due to various noise sources in the device

• Global noise from the power supply

• Environmental noise (e.g., temperature, humidity, etc.)

• Correlated noise (e.g., flicker noise, telegraph noise)

• White noise, also known as Gaussian noise

Why do we see Jitter in a Ring Oscillator?

Delay of each logic element has two components:

1. a fixed component

2. and a variable component

The variable component is due to various noise sources in the device

• Global noise from the power supply

• Environmental noise (e.g., temperature, humidity, etc.)

• Correlated noise (e.g., flicker noise, telegraph noise)

• White noise, also known as Gaussian noise

Deterministic

Used for TRNG

Jitter in Ring Oscillator

The (variable) period of a ring oscillator is given by

TRO = T0 + TG + TE + Tcorr + TGauss

Where

T0 : average period of the RO

TG : contribution from global noise

TE : Contribution from environmental noise

Tcorr : Contribution from correlated noise

TGauss : Contribution from Gaussian noise

Only this component is presumed

to be non-deterministic

From jitter to random bits

The transition region of RO output is unpredictable due to jitter.

Jitter

• Sample the output of RO in this unpredictable region

• Digitize the sampled value to get a random bit.

Due to jitter, transition from 0→1

happens after the sampling point.

Hence, 0 is sampled.

Due to jitter, transition from 0→1

happens before the sampling point.

Hence, 1 is sampled.

Sampling jitter

Output of RO

Sampling clock

RO D Q

Sampling clk

always @(posedge sampling_clk)

D_ff <= RO_out_bit;

Verilog snippet for sampling

Such an implementation will work only if posedge transitions of the sampling

clock coincide with the jitter regions of the RO output.

➔Sampling clock are RO output must be in the same phase.

➔Sampling clock can be output of another RO

Practical problems with sampling jitter

The previous configuration for sampling jitter does not work in practice.

• Exactly synchronizing two oscillating signals is very difficult to implement

on digital platforms as that requires a special layout

• Moreover, with time two signals may drift from each other due to their own

jitter and noises in the system.

https://www.istockphoto.com/de/fotos/synchronized-skydiving

Solving the practical problem of sampling jitter

Cause of failure: The previous approach fails because width of the

nondeterministic region is really small w.r.t deterministic region

→ Hence, sampling from deterministic region occurs with higher probability

3% is non-deterministic

Example: 94% is deterministic

Solving the practical problem of sampling jitter

Improve success rate: Increase nondeterministic region compared to

deterministic region

→ Combine jitter from multiple ROs

RO1

RO2

Combined jitter from two ROs

(Only positive edge transitions are shown)

The % of nondeterministic

region has increased

Solving the practical problem of sampling jitter

When combining multiple ROs, there are two main questions:

1. How many ROs should be combined?

2. What periods should they have?

Sampling jitter using co-prime ROs

Potential idea: Use many ROs of co-prime periods, i.e., co-prime ring length.

→ Hence, their ‘jitters’ will not overlap for long durations

Example: ROs of length 3, 5, 7, 11, …

Jitters from co-prime ROs

(Only positive edge transitions are shown)

(Different color for different length). . .

Sampling jitter using co-prime ROs: Practical issues

• Assumption of non-overlapping jitter doesn’t hold due to random phase-drift

and RO-to-RO coupling effects → There will be overlaps more frequently

• Ring lengths increase dramatically → Area increases

Ring lengths satisfying co-prime and odd: 1, 3, 5, 7, 11, 13, 17, 19, 23, …,

Sampling jitter using co-prime ROs: Practical issues

• Assumption of non-overlapping jitter doesn’t hold due to random phase-drift

and RO-to-RO coupling effects → There will be overlaps more frequently

• Ring lengths increase dramatically → Area increases

Ring lengths satisfying co-prime and odd: 1, 3, 5, 7, 11, 13, 17, 19, 23, …,

Summary:

Enhancing jitter using Co-prime ROs is flawed and is not used in practice.

RO-based TRNGs use all ROs of the same length.

→ Due to random phase-drifts, their jitter-regions get spread across.

→ Implementation becomes easier.

Question: How many ROs should be used to ensure quality?

Let there are N urns.

How many balls do we need to throw to fill all urns with high probability?

This problem is knows as the ‘Coupon Collector Problem’.

Expected number of balls:

The Urn Model [SMS07]

[SMS07] B. Sunar, W.J. Martin, and D.R. Stinson. “A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks”.

IEEE Trans. on Comp., Vol. 56, No. 1, 2007.

time

Time interval where we want to sample jitter

t0 t1

Apply Urn Model to calculate number of ROs

time

Time interval where we want to sample jitter

t0 t1

The goal will be to fill this interval with ‘transitions’ (jitter) of RO outputs,

such that any sampling point t falls within a ‘transition’ with high probability.

Apply Urn Model to calculate number of ROs

time

Time interval where we want to sample jitter

t0 t1

The goal will be to fill this interval with ‘transitions’ (jitter) of RO outputs,

such that any sampling point t falls within a ‘transition’ with high probability.

→ The interval is discretized by splitting it into N ‘urns’ of equal width.

Apply Urn Model to calculate number of ROs

time

Time interval where we want to sample jitter

t0 t1

The goal will be to fill this interval with ‘transitions’ (jitter) of RO outputs,

such that any sampling point t falls within a ‘transition’ with high probability.

→ The interval is discretized by splitting it into N ‘urns’ of equal width.

→ Try to fill most of these urns with transition regions from ROs

Apply Urn Model to calculate number of ROs

Expected number of Ros:
How to decide the

number (N) of urns?

Summary so far

• Jitter of ring oscillator (RO) is unpredictable

→ can be used to generate true random bits

• We need to combine jitter from many ROs to increase unpredictability

• ROs will be of equal ring-length

• Expected number of ROs can be derived using the Urn Model,

where N is the number of urns.

• Next question: How to calculate the number of urns i.e., N?

Number of Ros:

Calculating the number of urns

• As all ROs are of the same length, they have the same average period T.

• Jitter-width follows a Gaussian distribution with some standard deviation σ.

• We split each time-interval of width T into N urns.

Hence, width of each urn = T/N

Time

Period = T

Timing behaviour of one RO

Calculating the number of urns

Entropy in urn is related to urn-width.

μ + 0.699σμ - 0.699σ

Let jitter be a Gaussian distribution of mean μ and standard deviation σ.

Urn width = 2 × 0.699σ

A sample here has entropy 0.80.

μ + 0.335σμ - 0.335σ

Urn width = 2 × 0.335σ

A sample here has entropy 0.95.

Calculating the number of urns

Entropy vs urn-width

Entropy Urn width

0.99 2 × 0.145σ

0.97 2 × 0.258σ

0.95 2 × 0.335σ

0.90 2 × 0.479σ

0.80 2 × 0.699σ

0.50 2 × 1.229σ

Narrower the urn,

higher the entropy is.

Example: If we want that the generated random numbers have entropy ~0.80, then

1. Urn-width w = 2 × 0.699σ

2. Thus, the number of urns N = T/w = T/1.398σ

Typically σ is about 2% of the period T.

→Hence to achieve entropy 0.80, we need N ≈ 36. → Number of RO ≈ 151

Summary so far

• Jitter of ring oscillator (RO) is unpredictable

→ can be used to generate true random bits

• We need to combine jitter from many ROs to increase unpredictability

• ROs will be of equal ring-length

• Expected number of ROs can be derived using the Urn Model,

where N is the number of urns.

• #Urns N = T/(2 × e × σ) where factor e depends on desired entropy

Number of ROs:

This gives us a formal model to estimate the number of ROs.

time
t0 t1

So far, we have computed the expected number of ROs that we need to

fill all the N urns.

→ Filling all the urns require a large number of ROs.

time
t0 t1

So far, we have computed the expected number of ROs that we need to

fill all the N urns.

… relaxing the urn-filling condition

→ Filling all the urns require a large number of ROs.

The number of ROs can be reduced significantly if we aim for

a lower filling rate f < 1.

E.g., with f = 0.7 we have a 70% chance that the sampled value comes from

jitter and 30% chance that it comes from deterministic values.

Example: Expected number of ROs with filling rate f = 0.7

Let’s assume that there are N=100 urns.

With f = 0.7 we expect :

• 70 urns will contain jitter and

• the remaining 30 will contain deterministic values.

The expected number of ROs will be:

≈ 120

Summary of the ‘Urn model’ (1)

1. You aim for a level of entropy and

2. and choose a proper width for the urns.

Jitter has a Gaussian distribution

Summary of the ‘Urn model’ (2)

3. If possible, calculate the % of jitter for a RO on the target platform

→ Measuring jitter requires a special circuit (not covered in this lecture)

4. Otherwise, choose the standard deviation of jitter σ to be 1% or 2%

of the overall RO period.

5. Now, calculate

#Urns N = T/(2 × e × σ) where factor e depends on desired entropy

Summary of the ‘Urn model’ (3)

6. Expected number of ROs to fill all the urns (i.e., f = 1) with jitter

7. If we aim for a lower fill rate f < 1 then the expected number of urns

8. In practice, you will need more ROs to have more ‘confidence’.

9. With f<1 we reduce the number of ROs at the cost of quality.

To compensate the loss in quality, we need to generate more random

bits and then perform data compression (will be discussed next week).

Implementation of RO-based TRNG

• RO-based TRNGs are popular and there are several ways of implementing them.

• We will cover only a few of them in this course.

General structure of RO-TRNG

RO 1

RO n

. . .

XOR

Tree
D Q

RO

Sampling Sampling ‘clock’

Frequency

Divider

Random

bit

• The XOR-tree is a balanced arrangement of XOR gates with depth log(n).

It accumulates transitions from all the n ROs.

• Sampling clock for the D-FF is generated from another RO and divided to

obtain a much slower sampling frequency.

D flip-flop

Entropy

Source

Example of balanced XOR Tree

XOR

gate

XOR

gate

XOR

gate

XOR

gate

In-1

In-2

In-3

In-4

In-5

In-6

In-7

In-8

XOR

gate

XOR

gate

XOR

gate

8 input XOR tree with depth 3

Frequency divider

There are several ways of implementing a frequency divider.

• On FPGAs you have dedicated on-chip ‘Phased Locked Loop’ (PLL) IPs.

• To divide the clock by a power-of-2, then the easiest option is to use a

cascade of D-FFs. Each D-FF divides its input clock by 2.

D Q

clock1 Q clock2

clock1

clock2

// Clock divider-by2 in Verilog

always @ (posedge clock1)

clock2 <= ~clock2;

RO-based TRNG of [SPV06] (1)

[SPV06] D. Schellekens, B. Preneel, I. Verbauwhede. "FPGA Vendor Agnostic True Random Number Generator". IEEE FPL 2006.

Image source [SPV06].

• Uses ROs of identical length.

• The k outputs are XOR-ed

using a balanced XOR-tree

to produce a single bit.

• The bit is sampled in a D-FF

using a system clock of

frequency fs.

The authors performed various experimentations to determine l and k.

RO-based TRNG of [SPV06] (2)

Image source [SPV06].

Number of ROs for different fill-rate (f) and jitter-width

The authors used all ROs of length l = 3.

Noise source Number of ROs Resources: #Slices on

Xilinx Virtex 2 platform

Minimal 110 565

Robust 210 973

These two are implemented

The D-FF is sampled at 40 MHz clock frequency.

[WT08] K. Wold, and C.H. Tan. "Analysis and Enhancement of Random Number Generator in FPGA Based on Oscillator Rings".

RO-based TRNG: Better jitter sampling [WT08]
[SPV06] [WT08]

In [SPV06] there are too many transitions at the input of the D-FF.

→ Causes setup and hold time violations for the D-FF.

Better approach [WT08]: Sample transitions of individual ROs first and then XOR them.

→ Uncertainty is captured in the first layer of D-FFs, and then accumulated in a

deterministic way in the output D-FF.

Non-deterministic DeterministicNon-deterministic

Setup-Hold

violations

References
[JK99] B. Jun, and P. Kocher. “The Intel Random Number Generator”. White paper prepared for

the Intel Corporation (1999).

[SMS07] B. Sunar, W.J. Martin, and D.R. Stinson. “A Provably Secure True Random Number

Generator with Built-In Tolerance to Active Attacks”. IEEE Trans. on Comp., Vol. 56, No. 1, 2007.

[Yang18] B. Yang, "True Random Number Generators for FPGAs," PhD thesis, KU Leuven, 154

pages, 2018. https://www.esat.kuleuven.be/cosic/publications/thesis-307.pdf

[Rozic16] V. Rozic, "Circuit-Level Optimizations for Cryptography," PhD thesis, KU Leuven, 220

pages, 2016. https://www.esat.kuleuven.be/cosic/publications/thesis-286.pdf

[SPV06] D. Schellekens, B. Preneel, I. Verbauwhede. "FPGA Vendor Agnostic True Random

Number Generator". IEEE FPL 2006. DOI: 10.1109/FPL.2006.311206

[WT08] K. Wold, and C.H. Tan. "Analysis and Enhancement of Random Number Generator in

FPGA Based on Oscillator Rings". Reconfigurable Computing and FPGAs, 2008.

https://www.esat.kuleuven.be/cosic/publications/thesis-307.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-286.pdf

