
Digital System Design Practicals 2021

May 1, 2021

Contents
1 Introduction 3

1.1 Communication Channels . 3
1.2 Digital Design Flow . 4
1.3 Submissions . 4
1.4 Task Interviews . 4
1.5 Grading . 5
1.6 Plagiarism . 5

2 Task 1: Cipher Implementation 6
2.1 Task . 7

2.1.1 Interface . 7
2.1.2 Testing . 8

2.2 Workflow . 9
2.3 Specification . 10
2.4 Grading . 11
2.5 Deliverables . 11

3 Task 2: Accelerator Integration 12
3.1 Cipher Peripheral . 13
3.2 Specification . 15
3.3 Grading . 15
3.4 Deliverables . 15

4 Errata 16

2

1 Introduction
This document describes the tasks for the course “Digital System Design Practicals” for
the summer term 2021. In this course, we will study how to design digital integrated
circuits from the specification of the chip to the backend design. Note, the assignment
sheet does not contain all exercises yet. When providing an update of the assignment,
we will upload a new version to the course website and will announce it in #dsd and the
newsgroup.

1.1 Communication Channels
We provide the following communication channels:

DSD Email. We provide the email addresses robert.schilling@iaik.tugraz.at and pas-
cal.nasahl@iaik.tugraz.at for personal requests. Use this email only if you have a ques-
tion, which cannot be discussed publicly.

Newsgroup. The newsgroup tu-graz.lv.vlsi-design is used for general questions
for the practicals. It is the best way to share questions and answers publicly. Course
instructors are going to answer your questions here. The newsgroup is also used to
announce updates for the practicals. So please read it regularly!

Discord. Discord is used for questions regarding the lecture or the practicals and also
for the task interviews. You need to register an account on Discord and then join the
“IAIK” server. In #getting-started, please subscribe for the #dsd channel. It helps
us to recognize you if you don’t pick an arbitrary username, but one related to your civil
name. You can use the following invitation link:

https://discord.gg/PP6Aqk7Sr2

• #dsd is a generic channel for all DSD participants to ask questions in textual form.
Besides the newsgroup, it is another place to ask questions textually.

• #GXX is a prefix used for audio-only channels per group. You can use these channels
when solving the assignments.

3

mailto:robert.schilling@iaik.tugraz.at
mailto:pascal.nasahl@iaik.tugraz.at
mailto:pascal.nasahl@iaik.tugraz.at
https://discord.gg/PP6Aqk7Sr2

1.2 Digital Design Flow
The Digital Design Flow you are using is introduced in the presentation and the video
tutorial. We recommend you to install Modelsim locally on your computer, as this
speeds-up the development process of your HDL design.

1.3 Submissions
At the beginning of the semester, you will receive account credentials for some GitLab
instance. Using git, you can submit your deliverables in your personal git repository. To
submit, pay attention to the following aspects:

• You need to tag your commit. The tag name format is exX, where X corresponds
to the respective task. For example, the git tag for the submission of Task 1 is
ex1.

• After tagging the commit, don’t forget to push your tag!

• You can check the state of your git repository by visiting your git repository in
GitLab.

• If you tagged the wrong commit, you can delete the tag and tag the correct commit.

The latest possible submission deadlines for the respective tasks are given in Table 1.1.
These timestamps are hard deadlines. If you participate in any submission process, you
are going to get a grade at the end of the semester.

Task Deadline Max. points
Task 1 (Cipher Implementation) Tue, 2021-04-27 23:59 max. 60 points
Task 2 (Cipher Integration) Tue, 2021-06-15 23:59 max. 40 points

Table 1.1: Task submission deadlines and maximum achievable points.

1.4 Task Interviews
At the end of the semester, there will be a task interview. The date for the interviews
will be organized by us and we will inform you ahead of time. The interviews cover
general questions of each task and also discuss your particular solution you submitted.
For your task interview, please join your individual #GXX channel on Discord ten minutes
before the interview. This is also the appropriate place to test your microphone. The
goal of interviews is to verify you did the implementation yourself, understood the topic
and collect feedback on both sides.

4

https://www.iaik.tugraz.at/wp-content/uploads/2020/07/02_iaik_flow.pdf
https://cloud.tugraz.at/index.php/s/j5jQZ27Ef2xaWfx
https://cloud.tugraz.at/index.php/s/j5jQZ27Ef2xaWfx
https://gist.github.com/Razer6/cafc172b5cffae189b4ecda06cf6c64f
https://git.teaching.iaik.tugraz.at/
https://git.teaching.iaik.tugraz.at/

1.5 Grading
The maximum points per task are listed in Table 1.1. Depending on your achieved
points, you will get the associated grade according to Table 1.2.

0–50 Points → Nicht genügend (5)
51–62 Points → Genügend (4)
63–75 Points → Befriedigend (3)
76–87 Points → Gut (2)
88–100 Points → Sehr gut (1)

Table 1.2: Points to grade mapping.

1.6 Plagiarism
We will regularly check all submissions using automated plagiarism checking tools. If
we detect a case of plagiarism, all involved people (the source and all sinks) will receive
the grade U (Ungültig/Täuschung). Cases of plagiarism are handled as soon they are
detected.
To avoid getting into a situation of plagiarism follow the following rules:

• Don’t share code!

• Don’t tell/dictate your solution to others!

• Commit regularly to show activity!

5

2 Task 1: Cipher Implementation
In the first task, you are implementing an accelerator for a cryptographic primitive.
Resource constrained devices, such as in the Internet-of-Things, require lightweight
cryptography for efficiently encrypting data. Currently, the National Institute of Stan-
dards and Technology (NIST) is performing a competition to find suitable candidates
for lightweight cryptography:

https://csrc.nist.gov/projects/lightweight-cryptography

These candidates are AEAD (authenticated encryption with associated data) ciphers.

EK,N(M,AD)

Ciphertext
C

Message
M

Tag
T

AssocData
AD

Key K

Nonce N

Figure 2.1: AEAD scheme.

While simple block ciphers (like a plain AES cipher) only can provide data confi-
dentiality, AEAD ciphers can provide data confidentiality and integrity. As seen in
Figure 2.1, an AEAD cipher consists of the inputs message (M), associated data (AD),
nonce (N), and key (K) and of the outputs ciphertext (C) and authentication tag (T).
The nonce (number used only once) ensures that a different ciphertext is produced when
encrypting the same message twice even with the same key. When encrypting a message,
the AEAD cipher generates the ciphertext and also the authentication tag to provide
integrity. During the decryption process, the tag is used to verify the integrity of the
ciphertext and an error is raised if there are manipulations on the data. Furthermore,
AEAD schemes support processing of associated data. This data is not encrypted, but
the computed tag also provides integrity for the associated data.

6

https://csrc.nist.gov/projects/lightweight-cryptography

2.1 Task
The goal of this task is to implement an AEAD cipher from the NIST lightweight cryp-
tography competition as a hardware module. Each group gets a different cipher, but
with a very similar top-level interface. The specification of the cipher will contain all
necessary information to implement the design.

2.1.1 Interface
Listing 1 defines the top-level interface you need to implement for the top module of
your cipher. You can find the sizes KEY_LENGTH, DATA_LENGTH, and KEY_LENGTH in the
specification of your cipher.

Listing 1 Cipher Top Module Interface.

module CIPHER (
input logic Clk_CI, // Rising edge active clk.
input logic Rst_RBI, // Active low reset.
input logic [KEY_LENGTH-1:0] Key_DI, // Encryption key.
input logic [DATA_LENGTH-1:0] Nonce_DI, // Nonce.
input logic [LENGTH-1:0] DataLen_DI, // # of data blocks.
input logic [LENGTH-1:0] ADLen_DI, // # of ad blocks.
input logic [DATA_LENGTH-1:0] InData_DI, // Plaintext and AD.
input logic InDataValid_SI, // Master valid.
output logic InDataReady_SO, // Slave ready.
output logic [DATA_LENGTH-1:0] OutData_DO, // Ciphertext.
output logic OutDataValid_SO, // Slave valid.
input logic OutDataReady_SI, // Master ready.
output logic [DATA_LENGTH-1:0] Tag_DO, // Tag.
input logic Start_SI, // Start signal.
output logic Busy_SO, // Cipher busy.
output logic Finish_SO // Cipher finish.

);

Figure 2.2 depicts an example timing diagram of the cipher communication. This
example communication performs an encryption operation and processes two blocks of
associated data and two blocks of plaintext. The cipher computes two ciphertext blocks
and a tag.
The initiating party applies the key, nonce, data length, and AD length and starts the

cipher using the control signal Start_SI. Then, the cipher switches to the busy state
(Busy_SO = 1)and processes this information. Next, the cipher processes the associated
data, the input data and returns the encrypted output data. Since the cipher can encrypt
more than one block during one encryption, we use a simple handshake protocol. For
the input interface, the cipher waits for valid data indicated by InDataReady_SO=1.
The initiating party applies the input data and signals this by InDataValid_SI=1. The
cipher detects this and can process the data. The same protocol is used to transmit the
encrypted data on the OutData interface.

7

CLK_CI

RST_RBI

Key_DI Key

Nonce_DI Nonce

DataLen_DI Data length = 2

ADLen_DI AD length = 2

InDataReady_SO

InDataValid_SI

InData_DI AD1 AD2 PT1 PT2

OutData_DO CT1 CT2

OutDataValid_SO

OutDataReady_SI

Tag_DO Tag

Start_SI

Busy_SO

Finish_SO

Figure 2.2: Timing diagram of the signal interface.

As indicated in the timing diagram, the cipher first processes all blocks of associated
data. Then, it starts the actual encryption operation and processes each block of input
data. Since the cipher cannot store the whole ciphertext, it directly transmits the
computed ciphertext after its computation. Finally, after processing all data, the cipher
finishes by setting the Finish_SO signal, releasing the Busy_SO signal, and applying the
computed tag on the output signal Tag_DO.

2.1.2 Testing
The framework for the first task already provides most of the testing facility. As shown in
Figure 2.3, the core of the testbench is the cipher with the top-level interface as discussed
above. The testbench uses so-called drivers and monitors to hook-up the signal interface
of the cipher. The drivers are responsible for applying data to the cipher. The monitors
are responsible for reading data back data from the cipher and comparing it against the
expected data.
To apply and read back data, both the driver and the monitor have access to the

current test case, which contains all the necessary data. The test case is provided in
the form of a Stimuli object, which is parsed from the test vector file. The test vector
file (cipher.tv) contains a single test case per line according to the format defined in
Figure 2.4. All elements are delimited with a space character. First, the test vector
contains the encryption key, nonce, AD length, and data length. Next, it contains the
associated data, input data, and expected output data. The number of those elements
is dynamic, defined by AD length and data length. Finally, the test vector contains the
expected tag.
Note, your high-level model must generate test vectors in this format. If not, you

8

Clk & Rst

Gen

Te
st

ca
se

Pa
rs

e
r

tb_top.sv

d
u
t_

w
ra

p
p

e
r

CIPHER

cipher_tb.sv

C
ip

h
e
r

D
ri

v
e
r

D
a
ta

D
ri

v
e
r

C
ip

h
e
r

M
o
n
it

o
r

D
a
ta

M
o
n
it

o
r

Write Test

Status

Figure 2.3: Testbench structure.

Key Nonce ADLen DLen AD1 ADN
... D1 DK

... ED1 EDK
... Tag

ADLen=N DLen=K DLen=K

Figure 2.4: Testvector format structure.

might need to adapt the test case parser in testcase_parser.sv. Furthermore, your
cipher might use different block lengths. Adapt the test case parser and the stimuli
object accordingly.

2.2 Workflow
To complete Task 1, follow this workflow:

1. High-level modeling.
• Write an executable high-level model of the cipher using a language of your

choice (Python, C, ...).
• Generate test vectors with this first rough model.
• You can find a reference implementation and reference test vectors on the

NIST website.

2. Architecture design.
• Design the architecture of your cipher.
• Define modules, interfaces, and control-logic.

3. HDL Implementation

9

https://csrc.nist.gov/projects/lightweight-cryptography

• SystemVerilog, Verilog, VHDL

4. Test your implementation.
• Finish the implementation of all drivers and monitors.
• Integrate the cipher to the testbench and verify the functionality of your

implementation using the generated test vectors.

Note, the HDL implementation and testing might be done in the same step.

2.3 Specification
Your implementation must fulfill the following specification:

• Design your cipher with an HDL language of your choice (SystemVerilog, Verilog,
VHDL).

• Implement the AEAD version of this cipher.

• Implement one variant of the cipher (e.g. encryption, 128-bit block size).

• Use the interface described in Section 2.1.1.

• Test your cipher using the testbench framework with your generated test vectors.

• Run the synthesis on the cluster (check for timing violations, latches, ...).

• Create a design document including the following points:
– Introduction:

∗ Give an introduction into the cipher and the domain it is used.
∗ Introduce the constraints of the design (power budget, throughput, secu-
rity, ...).

– Specification:
∗ Highlight the functionality of the cipher.
∗ Partition the ciphers’s functionality into subtasks.
∗ Discuss the state machines and data path of your cipher.
∗ Explain the interface.
∗ Extract the chip area (in GE) from the logs.
∗ State the maximum frequency of the design.

– Architecture:
∗ Draw a block diagram visualizing the architecture of your design.

– An example form is available on the course website

10

https://www.iaik.tugraz.at/course/digital-system-design-705044-sommersemester-2021/

2.4 Grading
• Task 1: 60 points

– Tests: 20 points
– Design document: 5 points
– Design: 35 points

• Deductions:
– Coding standard: -5 points
– Errors and warnings (e.g. latches): -5 points

2.5 Deliverables
All files must be submitted in folder ex1 of your repository.

IMPORTANT Make sure to commit your files and push them to GitLab.

IMPORTANT Don’t forget to create a tag and push the tags according to Section 1.3.

11

3 Task 2: Accelerator Integration
In the second exercise, you are integrating the cryptographic accelerator from the first
exercise into a RISC-V System-on-Chip (SoC). You implement a cryptographic periph-
eral, that is memory mapped and can be accessed by the processor. Implement a small
C program that programs the peripheral and performs encryption.

CSR

IF Stage

IM

ID Stage EX Block

Prefetch
Buffer

In
st

ru
ct

io
n
 M

e
m

addr_o

rdata_i 32 ID
EX

Comp
Decoder

Decoder

Controller

Reg File

ALU
OpA

OpB

MULT
DIV

RdA
RdB

Wr

IM
PC

RF

RF

IM

LSU

D
a
ta

 M
e
m

addr_o

wdata_o

rdata_i

Ibex Core

OpA

OpB

32

32

IM

debug_req_i

Figure 3.1: The Ibex core.

Figure 3.1 depicts the Ibex core, a 2-stage in-order 32-bit RISC-V processor, which
you can find in the ex2/src/ibex directory of your repository.

instr_if

Data RAM

EOC Controller

GPO

Parallel Out

LFSR

2:1
Arbiter

1:6 Bus
MUX

Instr
ROMdata_if

GPO_DO

ParO_DO

EOC_DO

Figure 3.2: The Ibex chip.

The Ibex chip, which you can find in the top module ex2/src/sv/ibex_top.sv and in
Figure 3.2, already includes a set of peripherals. While the parallel out peripheral allows
to establish a communication between the Ibex and the testbench, the EOC controller
indicates the end of the executed program. The general purpose output (GPO) periph-
eral allows the Ibex to set output pints of the chip directly in software. Furthermore,
the Ibex chip contains an on-chip instruction ROM and a data RAM.

12

Interconnect. Both, the peripherals and the on-chip memory are connected to the Ibex
processor using a 32-bit interconnect. While the instruction interface allows the Ibex
to fetch instructions from the read-only instruction memory, the data interface is used
to interact with the peripherals and the data memory. An explanation of the commu-
nication protocol can be found in the Ibex manual. To support the communication to
different peripherals, a generic bus multiplexer routes the memory access to the right
slave peripheral. This decisssion is made up based on the memory address. To support
multiple masters accessing the same peripheral, a 2:1 arbiter arbitrates the requests
coming from the instruction and data interface and going to the ROM. In Figure 3.3,
you find the memory map of the existing peripherals.

Figure 3.3: Memory map of the Ibex chip.

Software. C programs can be compiled with the toolchain installed on the cluster or
locally by using the prebuild toolchain. To execute the program on Ibex, the binary
is converted to a patt ROM file and used in the ROM module, which is instantiated
in instr_rom.sv. The makefile located in the ex2 directory of your repository already
supports the automatic compilation and insertion into the ROM. To compile your own C
program, copy and adapt the template directory ex2/src/sw/hello-world and adapt
the PROGRAM ?= variable in the makefile. You can also specify the program during the
call to make, i.e., make hdlsb PROGRAM=hello-world, where the name is the folder
name in the sw directory.

3.1 Cipher Peripheral
The cipher peripheral can be configured via a memory mapped peripheral interface.
This allows the software to configure and acccess static data such as the encryption keys,
nonce, or the tag. Furthermore, a control register is used to start the encryption and

13

https://ibex-core.readthedocs.io/en/latest/03_reference/load_store_unit.html
https://seafile.iaik.tugraz.at/f/54d9985687324ce8b0df/?dl=1

determine when it finishes. To access the data, the peripheral implements a dedicated
master interface to accesses the data on its own, it is implementing a DMA.

Mode of Operation. The software is used to configure and start the encryption of
the cipher peripheral. First, it writes the encryption keys and nonce values to the
peripheral. It configures the starting addresses for the associated data, the input data,
and the output data. For example, this could be the starting addresses of C-arrays in
the software. Finally, it also configures the length of the associated and the data being
encrypted. Then, a control register is written indicating that the encryption operation
starts. The cipher switches to a busy state and starts fetching the associated data from
the configured memory address and processes it. Then, it continues with the encryption,
fetching and writing the required data from the memory. Meanwhile, the software polls
the status register until it is indicating that the operation has finished.

Peripheral Interface. The configuration of the cipher is memory-mapped, thus, the
cipher wrapper implements a peripheral interface. Attach this interface to the existing
bus multiplexer for the peripherals. Extend its size and attach the cipher peripheral
on the top level interface. Map the peripheral to the address 0x80100 by using the the
following configuration in ibex.svb.

` d e f i n e CIPHER_START 32 ' h00080100
` de f i n e CIPHER_SIZE 32 ' h00000100
` de f i n e CIPHER_MASK (~(`CIPHER_SIZE−1))
Look at the existing peripherals and the bus protocol specification regarding the im-

plementation of the bus protocol.

DMA Data Interface. The cipher peripheral directly fetches the associated data and
the plaintext and writes back the ciphertext to the data memory. To be able doing
that, it must implement a DMA interface to access the data memory. In the original
design, only the CPU has access to the data memory. Change the bus architecture and
use a bus arbiter to arbitrate requests coming from the CPU (via the bus multiplexer)
and the cipher peripheral. Within the cipher peripheral, you need to arbitrate between
read requests for the associated data and the plaintext and the write requests for the
ciphertext. Furthermore, the cipher peripheral needs to perform a size conversion, i.e.,
it needs to perform multiple requests on the 32-bit bus to fetch one block of associated
data, plaintext, or ciphertext.

Software Interface. Write a program that programs the cipher peripheral and per-
forms an encryption. Configure the accelerator, program source and destination ad-
dresses and start the encryption. Poll the accellerator until it finishes. You may use
your high-level model to generate test data for that program.

14

3.2 Specification
Your implementation must fulfill the following specification:

• Implement a cipher peripheral with a peripheral and master interface.

• Integrate the peripheral to the Ibex SoC

• Write a software that is using the cipher and showcases its functionality.

• Run the synthesis and place&route on the cluster (check for timing violations,
latches, ...).

• Extend the design document from ex1 with the following points:
– Extract the chip area (in GE) from the logs.
– State the maximum frequency of the design.
– Insert a picture of the chip after place&route.
– Explain your testing strategy.
– Explain the integration of the accelerator into the Ibex chip.

3.3 Grading
• Task 2: 40 points

– Design: 25 points
– Software & Test : 10 points
– Design document: 5 points

• Deductions:
– Coding standard: -5 points
– Errors and warnings (e.g. latches): -5 points

3.4 Deliverables
All files must be submitted in folder ex2 of your repository.

IMPORTANT Make sure to commit your files and push them to GitLab.

IMPORTANT Include the design document in the repository.

IMPORTANT Don’t forget to create a tag and push the tags according to Section 1.3.

15

4 Errata
This chapter lists releases and changes of this file.

2021-03-09 Initial release.

2021-03-27 Update timing diagram.

2021-04-27 Exercise 2.

2021-05-01 Fix CIPHER_MASK definition.

16

	Introduction
	Communication Channels
	Digital Design Flow
	Submissions
	Task Interviews
	Grading
	Plagiarism

	Task 1: Cipher Implementation
	Task
	Interface
	Testing

	Workflow
	Specification
	Grading
	Deliverables

	Task 2: Accelerator Integration
	Cipher Peripheral
	Specification
	Grading
	Deliverables

	Errata

