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Roderick Bloem V&T Abstraction

Abstraction
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Roderick Bloem V&T Abstraction

The Approach
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Roderick Bloem V&T Abstraction

Abstraction

• Represent complex program by simple program

– original program is concrete, simple one is abstract

• Construction: if abstraction correct, then original 

correct

– But: abstract program may fail even if the original is 

correct

– We will look at refinement later

• Whenever we can not make a decision with 

certainty, we allow all possibilities
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Predicate Abstraction

• Replace variables by predicates.  E.g., instead of x have 
the predicates
– b, meaning {x>0}, 

– c: {x<0}, 

– d: {x==0}

• or replace x and y by
– e: {x==y}, or by 

– f: {x<y}, or by 

– g: {2x – y < 0}, 
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Predicate Abstraction Examples

b: {x is odd}

assert(x!=38)

if(x==5) then S1 else S2 fi
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Predicate Abstraction

Example: keep only the lowest bit of a number.  

• b: {x is odd}

• assert(x!=38) becomes assert(b)

• assert(b) is stricter:

– if assert(x!=38) fails then assert(b) fails

– But not vice-versa

• if(x==5) then S1 else S2 fi becomes 

if(b?*:F) then S1 else S2 fi 

(meaning: if b is true, try both branches, otherwise try only the else branch)

Construct abstract programs one statement at a time
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Abstraction Example

For automatic abstraction, let’s first check some basics.

Predicate: b = {x  y}

Abstract

x := y?
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Roderick Bloem V&T Abstraction

Computing Abstraction

b = {x  y}

Use Hoare’s weakest precondition

{y  y} 

x : = y

{x  y}

Thus, yy before the statement iff xy after

x := y is abstracted to

b = true
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Roderick Bloem V&T Abstraction

Abstraction Example

For automatic abstraction, let’s first check some basics.

Predicate: b = {x  y}

Abstract 

y := y+1?
b b’
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Computing Abstraction

Now for y := y + 1.

{x  y + 1} 

y := y + 1

{x  y}

Thus, x  y + 1 before iff x  y after.

In which cases can we guarantee x  y+1?

Not enough information to decide whether xy+1 before – approximate:

b = b ? T : *;

b b’

{x  y} {x  y+1} 

T T

F *
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Roderick Bloem V&T Abstraction

Program Abstraction – Line by Line!
b:{x < 0}.

x = -2;

x = x + 1;

assert(x<0);

Abstraction is conservative: bugs are preserved (but new bugs may occur).
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Conservative Abstraction 
Let us abstract x by b:{x < 0}.

We may loose some information Example:

x = -2;

x = x + 1;

assert(x<0);

is abstracted statement-by statement-to   

b = true;

b = b ? * : false;

assert(b);

The abstraction is conservative: bugs are preserved (but new bugs may occur).
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Roderick Bloem V&T Abstraction

Two Predicates
Two predicates: b={x  y} and c={x=y+1}. Statement: y := y + 1

y := y + 1

y := y + 1

Abstraction

b c b’ c’

xy x=y+1
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Two Predicates
Two predicates: b={x  y} and c={x=y+1}

preconditions:

{x  y + 1}

y := y + 1

{x  y}

{x = y + 2}

y := y + 1

{x = y+1}

y:=y+1 is abstracted to

simultaneous

b := b&&!c || !b&&c ? T : F

c := b&&!c || !b&&c ? F : *

end

In general, simultaneous assignments are needed for abstract statements

b c b’ c’

xy x=y+1 xy+1 x=y+2

T T X

T F a  b T F

F T a=b+1 T F

F F a>b+1 F *
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Roderick Bloem V&T Abstraction

Abstraction of Conditional

Original Program

if(x == 5) then 

S1 

else 

S2 

fi

Abstract Program (b = {x odd} )

* denotes nondeterministic value
b

{x = 5} 
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Roderick Bloem V&T Abstraction

Abstraction of Conditional

Original Program

if(x == 5) then 

S1 

else 

S2 

fi

Abstract Program (b = {x odd})

if(b?*:F) then 

S1 

else

S2

fi

We use * to denote a 

nondeterministic value

Note: 

• b=false is the same as x even, which implies x!=5.

• b=true means that x is odd, which means x may or may not be 5

b

{x = 5} 

T *

F F
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Another Example

done = 0;

while(done == 0){

if(x != 0)

x--;

else

done++;

}

assert(x == 0);

Which predicates do we need?
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Abstraction

• Tricky: find the proper abstraction!

– You use the counterexamples, but how?

– You can do it by hand

– You can try to do it automatically

• Automatically finding the proper abstraction 

cannot always work.  Why not?
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The Approach
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Precisely: assignment
Original: x:= e

Predicates p1,…,pn.

Suppose we have
{qi}

x := e;

{pi}

Let ai be the disjunction of  assignments (rows in 
table) to p1…pn that imply qi.

Let bi be the disjunction of  assignments (rows) 
to p1…pn that imply qi.

The remaining assignments contain *

x := e is replaced by

simultaneous

p1 = a1 ? T : b1 ? F : *

…

pn = an ? T : bn ? F : *

end simultaneous

example

Assignment: b := b+1

Predicates: p1 = {a  b} and p2 = {a=b+1}

{a  b + 1}    {a = b + 2}

b := b + 1     b := b + 1

{a  b}        {a = b + 1}

Look at the table: row TT, TF, and FT have a T in 
column ab and TT and FF have an F in that 
column.  Therefore:

p1  p2           implies a  b + 1 

(p1p2)(p1p2) implies a > b + 1

(note: false implies anything)

For the 2nd predicate:

p1  p2 implies a = b+2

p1  p2 implies a  b+2

b:=b+1 is abstracted to

simultaneous

{ab}   := p1||p2 ? T : p1==p2 ? F : *

{a=b+1} := p1&&p2 ? T : p1!=p2 ? F : *

end

(Cf. same example on an earlier slide)

p1 p2

ab a=b+1 ab+1 a=b+2

T T  T/F T/F

T F ab T F

F T a=b+1 T F

F F a>b+1 F *


