
IAIK

Professor Horst Cerjak, 19.12.2005

1

Roderick Bloem V&T Abstraction

Abstraction

IAIK

Professor Horst Cerjak, 19.12.2005

2

Roderick Bloem V&T Abstraction

The Approach

C Program
Abstract

Abstract

Program
Boolean Model

Checker

Counterexample
Analyze

counterexample

on original

program

 True

counterexam

ple?

NO

YES

BUG

Predicates

(initially empty) Correct?

NO

YES C Program

is correct

IAIK

Professor Horst Cerjak, 19.12.2005

3

Roderick Bloem V&T Abstraction

Abstraction

• Represent complex program by simple program

– original program is concrete, simple one is abstract

• Construction: if abstraction correct, then original

correct

– But: abstract program may fail even if the original is

correct

– We will look at refinement later

• Whenever we can not make a decision with

certainty, we allow all possibilities

IAIK

Professor Horst Cerjak, 19.12.2005

4

Roderick Bloem V&T Abstraction

Predicate Abstraction

• Replace variables by predicates. E.g., instead of x have
the predicates
– b, meaning {x>0},

– c: {x<0},

– d: {x==0}

• or replace x and y by
– e: {x==y}, or by

– f: {x<y}, or by

– g: {2x – y < 0},

IAIK

Professor Horst Cerjak, 19.12.2005

5

Roderick Bloem V&T Abstraction

Predicate Abstraction Examples

b: {x is odd}

assert(x!=38)

if(x==5) then S1 else S2 fi

IAIK

Professor Horst Cerjak, 19.12.2005

6

Roderick Bloem V&T Abstraction

Predicate Abstraction

Example: keep only the lowest bit of a number.

• b: {x is odd}

• assert(x!=38) becomes assert(b)

• assert(b) is stricter:

– if assert(x!=38) fails then assert(b) fails

– But not vice-versa

• if(x==5) then S1 else S2 fi becomes

if(b?*:F) then S1 else S2 fi

(meaning: if b is true, try both branches, otherwise try only the else branch)

Construct abstract programs one statement at a time

IAIK

Professor Horst Cerjak, 19.12.2005

7

Roderick Bloem V&T Abstraction

Abstraction Example

For automatic abstraction, let’s first check some basics.

Predicate: b = {x y}

Abstract

x := y?

IAIK

Professor Horst Cerjak, 19.12.2005

8

Roderick Bloem V&T Abstraction

Computing Abstraction

b = {x y}

Use Hoare’s weakest precondition

{y y}

x : = y

{x y}

Thus, yy before the statement iff xy after

x := y is abstracted to

b = true

IAIK

Professor Horst Cerjak, 19.12.2005

9

Roderick Bloem V&T Abstraction

Abstraction Example

For automatic abstraction, let’s first check some basics.

Predicate: b = {x y}

Abstract

y := y+1?
b b’

IAIK

Professor Horst Cerjak, 19.12.2005

10

Roderick Bloem V&T Abstraction

Computing Abstraction

Now for y := y + 1.

{x y + 1}

y := y + 1

{x y}

Thus, x y + 1 before iff x y after.

In which cases can we guarantee x y+1?

Not enough information to decide whether xy+1 before – approximate:

b = b ? T : *;

b b’

{x y} {x y+1}

T T

F *

IAIK

Professor Horst Cerjak, 19.12.2005

11

Roderick Bloem V&T Abstraction

Program Abstraction – Line by Line!
b:{x < 0}.

x = -2;

x = x + 1;

assert(x<0);

Abstraction is conservative: bugs are preserved (but new bugs may occur).

IAIK

Professor Horst Cerjak, 19.12.2005

12

Roderick Bloem V&T Abstraction

Conservative Abstraction
Let us abstract x by b:{x < 0}.

We may loose some information Example:

x = -2;

x = x + 1;

assert(x<0);

is abstracted statement-by statement-to

b = true;

b = b ? * : false;

assert(b);

The abstraction is conservative: bugs are preserved (but new bugs may occur).

IAIK

Professor Horst Cerjak, 19.12.2005

13

Roderick Bloem V&T Abstraction

Two Predicates
Two predicates: b={x y} and c={x=y+1}. Statement: y := y + 1

y := y + 1

y := y + 1

Abstraction

b c b’ c’

xy x=y+1

IAIK

Professor Horst Cerjak, 19.12.2005

14

Roderick Bloem V&T Abstraction

Two Predicates
Two predicates: b={x y} and c={x=y+1}

preconditions:

{x y + 1}

y := y + 1

{x y}

{x = y + 2}

y := y + 1

{x = y+1}

y:=y+1 is abstracted to

simultaneous

b := b&&!c || !b&&c ? T : F

c := b&&!c || !b&&c ? F : *

end

In general, simultaneous assignments are needed for abstract statements

b c b’ c’

xy x=y+1 xy+1 x=y+2

T T X

T F a b T F

F T a=b+1 T F

F F a>b+1 F *

IAIK

Professor Horst Cerjak, 19.12.2005

15

Roderick Bloem V&T Abstraction

Abstraction of Conditional

Original Program

if(x == 5) then

S1

else

S2

fi

Abstract Program (b = {x odd})

* denotes nondeterministic value
b

{x = 5}

IAIK

Professor Horst Cerjak, 19.12.2005

16

Roderick Bloem V&T Abstraction

Abstraction of Conditional

Original Program

if(x == 5) then

S1

else

S2

fi

Abstract Program (b = {x odd})

if(b?*:F) then

S1

else

S2

fi

We use * to denote a

nondeterministic value

Note:

• b=false is the same as x even, which implies x!=5.

• b=true means that x is odd, which means x may or may not be 5

b

{x = 5}

T *

F F

IAIK

Professor Horst Cerjak, 19.12.2005

17

Roderick Bloem V&T Abstraction

Another Example

done = 0;

while(done == 0){

if(x != 0)

x--;

else

done++;

}

assert(x == 0);

Which predicates do we need?

IAIK

Professor Horst Cerjak, 19.12.2005

24

Roderick Bloem V&T Abstraction

Abstraction

• Tricky: find the proper abstraction!

– You use the counterexamples, but how?

– You can do it by hand

– You can try to do it automatically

• Automatically finding the proper abstraction

cannot always work. Why not?

IAIK

Professor Horst Cerjak, 19.12.2005

25

Roderick Bloem V&T Abstraction

The Approach

C Program
Abstract

Abstract

Program
Boolean Model

Checker

Counterexample
Analyze

counterexample

on original

program

 True

counterexam

ple?

NO

YES

BUG

Predicates

(initially empty) Correct?

NO

YES C Program

is correct

IAIK

Professor Horst Cerjak, 19.12.2005

26

Roderick Bloem V&T Abstraction

Precisely: assignment
Original: x:= e

Predicates p1,…,pn.

Suppose we have
{qi}

x := e;

{pi}

Let ai be the disjunction of assignments (rows in
table) to p1…pn that imply qi.

Let bi be the disjunction of assignments (rows)
to p1…pn that imply qi.

The remaining assignments contain *

x := e is replaced by

simultaneous

p1 = a1 ? T : b1 ? F : *

…

pn = an ? T : bn ? F : *

end simultaneous

example

Assignment: b := b+1

Predicates: p1 = {a b} and p2 = {a=b+1}

{a b + 1} {a = b + 2}

b := b + 1 b := b + 1

{a b} {a = b + 1}

Look at the table: row TT, TF, and FT have a T in
column ab and TT and FF have an F in that
column. Therefore:

p1 p2 implies a b + 1

(p1p2)(p1p2) implies a > b + 1

(note: false implies anything)

For the 2nd predicate:

p1 p2 implies a = b+2

p1 p2 implies a b+2

b:=b+1 is abstracted to

simultaneous

{ab} := p1||p2 ? T : p1==p2 ? F : *

{a=b+1} := p1&&p2 ? T : p1!=p2 ? F : *

end

(Cf. same example on an earlier slide)

p1 p2

ab a=b+1 ab+1 a=b+2

T T T/F T/F

T F ab T F

F T a=b+1 T F

F F a>b+1 F *

