
IAIK

Professor Horst Cerjak, 19.12.2005

1

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

See http://deadlockempire.github.io/#2-flags



IAIK

Professor Horst Cerjak, 19.12.2005

2

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Verification & Testing

Dynamic Algorithms for Concurrency 

Problems

Roderick Bloem
Sources: 

• Savage, Burrows, Nelson, Sobalvarro, Anderson, Eraser: A 
Dynamic Race Detector for Multithreaded Programs.  ACM 
Transactions on Computer Systems 15, 1997

• Visser et al, Model Checking Programs, Model Checking 
Programs, Automated Software Engineering 10, 2003



IAIK

Professor Horst Cerjak, 19.12.2005

3

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Static & Dynamic

Static verification. Consider program code, check 

for all possible executions

Dynamic verification: Runtime verification of 

executions



IAIK

Professor Horst Cerjak, 19.12.2005

4

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Deadlocks & Race Conditions

Deadlocks show themselves when a program hangs

Race conditions cause unexpected results

• Hard to find because they often occur only with a specific 

scheduling.

• Often not found during testing but as low-frequency 

(high-impact) bugs at client site.  Hard to reproduce.

• Today: Algorithms that find these problems without 

looking at all schedulings.



IAIK

Professor Horst Cerjak, 19.12.2005

5

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Dynamic Tools for Concurrency Problems

What we want:

• better than testing

• works for any program we can run!  

• We can sacrifice precision: unnecessary warnings, 
undiscovered bugs are OK

Subject: dynamic methods to find concurrency errors –
deadlocks and race conditions

Dynamic methods:

• Result depends on exact run (inputs and scheduling)

• Try to minimize dependence on scheduling



IAIK

Professor Horst Cerjak, 19.12.2005

11

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Locking Example
int available = 0;

thread 1:
public synchronized int get() { 
while (!available) { 
try { wait(); }
catch (InterruptedException e) { }

} 
available = false; 
notifyAll(); 
return contents;  //still locked!

} 

thread 2:
public synchronized void put(int value) { 
while (available) { 
try { wait(); } 
catch (InterruptedException e) { }

} 
contents = value; 
available = true; 
notifyAll(); 

} 



IAIK

Professor Horst Cerjak, 19.12.2005

12

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Explicit Locks

ReentrantLock l = new ReentrantLock();

l.lock();

…

l.unlock();

Note: synchronized locks are just locks on “this”



IAIK

Professor Horst Cerjak, 19.12.2005

13

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Deadlock

A deadlock is a circular wait

For locks, this is called lock reversal:

– Thread 1 holds lock A, waits for B

– Thread 2 holds lock B, waits for A

or with three threads:

– Thread 1 holds lock A, waits for B

– Thread 2 holds lock B, waits for C

– Thread 3 holds lock C, waits for A



IAIK

Professor Horst Cerjak, 19.12.2005

14

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Deadlock Example
ReentrantLock ALock = 

new ReentrantLock;

ReentrantLock BLock = 

new ReentrantLock;

class Alice{    

void hug(){

ALock.lock();

Block.lock();

work…

Block.unlock()

ALock.unlock();

}}

class Bob{

void hug(){

BLock.lock();

Alock.lock();

work…

Alock.unlock();

BLock.unlock();

}}

Thread 1 calls Alice.hug() 

Thread 1 calls ALock.lock()

[T1 holds AlLock]

Thread 2 calls Bob.hug

Thread 2 calls Block.lock();

[T1 holds AlLock, T2 holds BLock]

Thread 1 calls Block.lock()

[T1 holds ALock waits for BLock, T2 holds BLock]

Thread 2 calls Alock.lock()

[T1 holds ALock waits for BLock, 

T2 holds BLock, waits for ALock]

(deadly embrace)



IAIK

Professor Horst Cerjak, 19.12.2005

16

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Gate Locks
A gate lock prevents a deadlock by protecting 
the areas with lock reversal

ReentrantLock gateLock; 

class Alice{

void hug(){

gateLock.lock();

ALock.lock();

Block.lock();

Block.unlock()

ALock.unlock();

gateLock.unlock();

}}

class Bob{ 

void hug(){

gateLock.lock();

BLock.lock();

Alock.lock();

Alock.unlock()

BLock.unlock();

gateLock.unlock();

}}



IAIK

Professor Horst Cerjak, 19.12.2005

17

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Lock Tree Algorithm

Dynamic algorithm to find deadlocks

• Lock reversal: only for deadlocks with two threads

• Dynamic: may miss deadlocks (statements not 
executed at all or not in every possible order)

• False warnings: other mechanisms may prevent 
deadlock (e.g., shared variable)

In a tree, keep track the order in which locks are 
acquired and released; see if there are reversals

T1

ALock

BLock

T2

BLock

ALock



IAIK

Professor Horst Cerjak, 19.12.2005

18

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Lock Tree Algorithm

Build trees during runtime
– each tree has a current node

– If lock acquired create new child and move to it

– If node released, move up one level

After termination, analyze trees.  Possible deadlock if 
1. T1 contains a node Li with ancestor Lj

2. T2 tree contains a node Lj with ancestor Li

3. There is no gate lock: node Lk which is an ancestor of Li in T1 and Lj in T2

A gate lock is a lock that is
1. an ancestor of Li and  Lj in T1 and

2. an ancestor of Li and Lj in T2

Limitations

• Works for deadlocks involving two threads only

• Works only for properly nested locks



IAIK

Professor Horst Cerjak, 19.12.2005

19

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Lock Tree

Thread 1:

L1.lock();

L3.lock();

L2.lock();

L2.unlock();

L4.lock();

L4.unlock();

L3.unlock()

L1.unlock();

L4.lock();

L2.lock();

L3.lock();

L3.unlock()

L2.unlock();

L4.unlock();

Thread 2:

L1.lock();

L2.lock();

L3.lock();

L3.unlock();

L2.unlock

L1.unlock();

L4.lock();

L3.lock();

L2.lock();

L2.unlock();

L3.unlock();

L4.unlock();

Draw lock tree by executing T1 first and then T2



IAIK

Professor Horst Cerjak, 19.12.2005

20

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Lock Tree
T1

L1

L3

L2 L4

L4

L2

L3

T2

L1

L2

L3

L4

L3

L2

Where are the potential deadlocks?



IAIK

Professor Horst Cerjak, 19.12.2005

21

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Deadlocks

Potential deadlocks in the last example,
– L3L4 left versus L4L3 right is a problem

– L3L2 left versus L2L3 right is not: protected by L1

– L2L3 left versus L3L2 right is not: protected by L4

To get deadlock:

1. Execute T2, stop when L4 acquired, 

2. Execute T1 until deadlock. 

Note: executing T1 first then T2 will not give deadlock.  

By executing one scheduling we found a problem in a 
different scheduling!



IAIK

Professor Horst Cerjak, 19.12.2005

22

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Limitations

1. Dependence on execution: If suspicious code is 

never executed, we do not find deadlock

2. Deadlocks do not have to be due to locks

3. Deadlocks can be prevented without using 

locks

(trick for 2,3: build your own lock.)



IAIK

Professor Horst Cerjak, 19.12.2005

23

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Limitations: 

LockTree detects False Deadlock
class Lock{

Lock lock;

int a = 0; // the gate lock

class Alice{

ReentrantLock ALock = …;

void hug(){

synchronize(lock){

while(a==0) lock.wait();

}

ALock.lock();

Block.lock();

Block.unlock();

ALock.unlock();

a = 0;

synchronize(lock){

lock.notifyAll();

}

}

}

class Bob{

ReentrantLock Block = …;

void hug(){

synchronize(lock){

while(a==1) lock.wait();

}

Block.lock();

Alock.lock();

Alock.unlock();

Block.unlock();

a = 1;

synchronize(lock){

lock.notifyAll()

}

}

}



IAIK

Professor Horst Cerjak, 19.12.2005

24

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Limitations: An undetected Deadlock

class Lock{}

Lock lock;

int a = 0, b = 0;

class Alice{

void hug(){

synchronize(lock){

while(a==0) lock.wait();     

}

a = 0;

b = 1; 

synchronize(lock){

lock.notifyAll;
}

}

}

class Bob{

void hug(){

synchronize(lock){

while(b==0) lock.wait(); 

}     

b = 0;

a = 1;

synchronize(lock){

lock.notifyAll();

}

}

}



IAIK

Professor Horst Cerjak, 19.12.2005

25

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Data Races



IAIK

Professor Horst Cerjak, 19.12.2005

26

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Data Race

A data race exists when:

1. Two threads access variable concurrently

2. At least one access is write

3. Nothing prevents simultaneous access 

When data race occurs, result depends on the interleaving

Not necessarily bad

• Thermometer writes to int temp, GUI reads: no locks needed

But be careful: 

• Writes to ints are atomic, so this works

• if temp is a long or a structure, you need locking

How do you usually prevent race conditions?



IAIK

Professor Horst Cerjak, 19.12.2005

27

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Eraser

• Check locking behavior

• For any shared data, is some lock always held on 

access?

• This condition is sufficient but not necessary for 

correctness

• Dynamic algorithm

– Computes locks held during one run

– May not find all problems

– May warn when no problem exists

– What it finds depends on the run!



IAIK

Professor Horst Cerjak, 19.12.2005

28

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Bank Account 
(Grandma’s Disappearing Money)

class Acct{

private long balance;

private long acctNr;

Acct(){

acctNr = Acct.getNewNr();

balance = 0;    

}

long getAcctNr(){

return acctNr;

}

long getBalance(){

return balance;

}

void deposit(long amount){

long current;

current = balance;

current += amount;

balance = current;

}

}



IAIK

Professor Horst Cerjak, 19.12.2005

29

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Bank Account 
(Grandma’s Disappearing Money)

class Acct{
private long balance;
private long acctNr;

Acct(){
acctNr = Acct.getNewNr();
balance = 0;    

}

long getAcctNr(){
return acctNr;

}

long getBalance(){
return balance;

}

void deposit(long amount){
long current;

current = balance;
current += amount;
balance = current;

}
}

class Acct{
private long balance;
private long acctNr;

Acct(){
acctNr = Acct.getNewNr();
balance = 0;    

}

long getAcctNr(){
return acctNr;

}

long getBalance(){
return balance;

}

void deposit(long amount){
long current;

current = balance;
current += amount;
balance = current;

}
}



IAIK

Professor Horst Cerjak, 19.12.2005

30

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Data Race
void deposit(long amount){

long current;

current = this.balance;

current += depositAmount;

this.balance = current;

}

Initial balance is 0, deposit 100 twice.  Final balance: 100 instead of 200.

Thread 1 (You):

account1.deposit(100)

current = balance; (0)

current += amount; (100)

balance = current; (100)

Thread 2 (Grandma):

account1.deposit(100)

current = balance; (0)

current += amount; (100)

balance = current; (100)

Where did Grandma’s money go??

• Same problem occurs if you use balance +=amount.



IAIK

Professor Horst Cerjak, 19.12.2005

31

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Eraser – Simple Version

At any point in time, a thread t holds a set of locks: locks(t)

Associate with each variable v a set of lock candidates, C(v)

For each variable v {

C(v) = all_locks;

}

// called when thread t reads variable v

read(t,v){

C(v) := C(v)  locks(t);

if C(v) =  then issue warning;

}

// same for write(t,v)

Note: minimal dependence on order of scheduling!

Results only depends on execution paths taken (which may in turn depend on scheduler)



IAIK

Professor Horst Cerjak, 19.12.2005

32

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Example

Thread 1 Thread 2 locks(T1) locks(T2) C(v)

l1.lock();

v := 1;

l1. unlock()

l2.lock()

v := v + 1;

l2.unlock()



IAIK

Professor Horst Cerjak, 19.12.2005

33

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Example

Thread 1 Thread 2 locks(T1) locks(T2) C(v)

  {l1, l2}

l1.lock(); {l1}

v := 1; {l1}

l1. unlock() 

l2.lock() {l2}

v := v + 1; : 

warning!

l2.unlock() 



IAIK

Professor Horst Cerjak, 19.12.2005

34

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Bank Account, 2
class Acct{

private long balance;

private long acctNr;

private ReentrantLock l;

Acct(){

acctNr = Acct.getNewNr();

balance = 0;  

l = new Lock();  

}

long getAcctNr(){

return acctNr;

}

long getBalance(){

long currentBalance;

l.lock();

currentBalance = balance;

l.unlock();

return currentBalace;

}

void deposit(long amount){

long current;

l.lock();

current = balance;

current += amount;

balance = current;

l.unlock();

} }

Does this solve our problem?



IAIK

Professor Horst Cerjak, 19.12.2005

35

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Remaining Problems

Program is correct but Eraser doesn’t understand:

1. Initialization not protected

– But initialization is never simultaneous with anything 

else!

2. Account number not protected

3. Efficiency problem: Two reading threads 

reading have to wait for each other. 

– Exclude simultaneous read/writes, simultaneous 

reads are OK. 



IAIK

Professor Horst Cerjak, 19.12.2005

36

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency



IAIK

Professor Horst Cerjak, 19.12.2005

37

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Initialization & Read-Shared

Virgin: new data

Exclusive: only one thread has 
access (initialization mode)

Shared: read-only, after initialization 
finished

shared-modified: at least one writer 
and one reader

Start computing lock sets when 
second thread accesses variable 

Report warnings when moving to 
shared-modified & lock set empty

Side effect: increased dependency on 
scheduler.  (When do we leave 
Exclusive?)

Virgin

Exclusive

Shared
Shared -

Modified

rd/wr, 

first thread

wr

rd
wr

wr, 

new thread

rd,

new thread

rd/wr



IAIK

Professor Horst Cerjak, 19.12.2005

38

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Initialization & Read-Shared

Virgin: new data

Exclusive: only one thread has 
access (initialization mode)

Shared: read-only, after initialization 
finished

shared-modified: at least one writer 
and one reader

Start computing lock sets when 
second thread accesses variable 

Report warnings when moving to 
shared-modified & lock set empty

Side effect: increased dependency on 
scheduler.  (When do we leave 
Exclusive?)



IAIK

Professor Horst Cerjak, 19.12.2005

39

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Example
Thread 1 Thread 2 locks(T1) locks(T2) state(v) C(v)

l1.lock();

v := 1;

v := v + 1

l1. unlock()

l2.lock()

l := v + 1;

l2.unlock()

l1.lock();

l := v + 1;

v = l;

l1. unlock()



IAIK

Professor Horst Cerjak, 19.12.2005

40

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Example
Thread 1 Thread 2 locks(T1) locks(T2) state(v) C(v)

  VIRGIN {l1, l2}

l1.lock(); {l1}

v := 1; EXCLUSIVE

v := v + 1

l1. unlock() 

l2.lock() {l2}

l := v + 1; SHARED {l2}

l2.unlock() 

l1.lock(); {l1}

l := v + 1; 

v = l; SHARED-MODIFIED WARNING

l1. unlock() 



IAIK

Professor Horst Cerjak, 19.12.2005

41

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Bank Account, 2
class Acct{

private long balance;

private long acctNr;

private ReentrantLock l;

Acct(){

acctNr = Acct.getNewNr();

balance = 0;  

l = new Lock();  

}

long getAcctNr(){

return acctNr;

}

long getBalance(){

long currentBalance;

l.lock();

currentBalance = balance;

l.unlock();

return currentBalace;

}

void deposit(long amount){

long current;

l.lock();

current = balance;

current += amount;

balance = current;

l.unlock();

} }

Does this solve our problem?



IAIK

Professor Horst Cerjak, 19.12.2005

42

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Eraser, version II
//called when thread t reads var v

read(t,v){

case state(v) of{

VIRGIN: read before write!;

EXCLUSIVE: 

if( t != threadid(v) ){ 

state(v) = SHARED; 

locks(v) = locks(t); }

SHARED:  

locks(v) = locks(v)  locks(t);

SHARED-MODIFIED: 

locks(v) = locks(v)  locks(t);  

if(locks(v) = ) emit warning;

endcase

}

Per variable keep:

• state

• when exclusive: thread id

• when shared: lock set

//called when thread t writes var v

write(t,v){

case state(v) of{

VIRGIN:

state(v) = EXCLUSIVE;

threadid(v) = t;

EXCLUSIVE: 

if(t != threadid(v)){ 

state(v) = SHARED-MODIFIED; 

locks(v) = locks(t);

if(locks(v) = ) emit warning;

}

SHARED:  

state(v) = SHARED-MODIFED;

locks(v) = locks(v)  locks(t);

if(locks(v) = ) emit warning;

SHARED-MODIFIED: 

locks(v) = locks(v)  locks(t);  

if(locks(v) = ) emit warning;

endcase

}

Note for C programmers: who needs breaks?



IAIK

Professor Horst Cerjak, 19.12.2005

43

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Problem 2: Read/Write Locks

Let’s solve problem 2: simultaneous reads should be allowed

Read-write locks allow for

• multiple simultaneous readers, 

• a write is never simultaneous with another read or write.

Useful if you have many reads, regular writes.  (Tricky to implement: prevention 
of starvation for writers)

Lock l = new ReentrantReadWriteLock();

// acquire/release l in read mode

l.readLock().lock();

l.readLock().unlock();

// acquire/release l in write mode

l.writeLock().lock();

l.writeLock().unlock();



IAIK

Professor Horst Cerjak, 19.12.2005

44

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Bank Account, 3
class Acct{

private long balance;

private long acctNr;

private ReentrantReadWriteLock l;

Acct(){

acctNr = Acct.getNewNr();

balance = 0;  

l = new ReentrantReadWriteLock();  

}

long getAcctNr(){

return acctNr;

}

long getBalance(){

long currentBalance;

l.readLock().lock();

currentBalance = balance;

l.readLock().unlock();

return currentBalace;

}

void deposit(long amount){

long current;

l.writeLock().lock();

current = balance;

current += depositAmount;

balance = current;

l.writeLock().unlock();

} }



IAIK

Professor Horst Cerjak, 19.12.2005

45

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Problem

Lockset does not work properly

Bank account is correct, but

– write lock is not always held and

– always holding read lock is not enough (a write with 

just a read lock would be a problem)



IAIK

Professor Horst Cerjak, 19.12.2005

46

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Lockset for Read/Write Locks

Let locks(t) be the set of locks held by t

Let write_locks(t) be the set of write locks held by t 

For each variable v {

C(v) = all_locks;

}

read(t,v){

C(v) := C(v)  locks(t);

if C(v) =  then issue warning;

}

wite(t,v){

C(v) := C(v)  write_locks(t);

if C(v) =  then issue warning;

}



IAIK

Professor Horst Cerjak, 19.12.2005

47

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Example

Thread 1 rlocks wlocks Thread 2 rlocks wlocks C(v)

    all locks

l.rdl.lk() {l}

l.rdl.lk() {l}

read v {l}

read v {l}

l.rdl.ulk() 

l.rdl.ulk() 

l.wl.lk() {l}

write v {l}

l.wl.ulk() 

l.rl.lk() {l}

write v : warning!



IAIK

Professor Horst Cerjak, 19.12.2005

48

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Remaining False Alarms

• Memory reuse: a private memory manager may use a 
location for one purpose first, then for another purpose.  
Locks will be different

• Private locks.

• Benign races

Solution: annotations
– EraserReuse()

– Eraser{Read/Write}{Lock/Unlock}()

– EraserIgnore{On/Off}()



IAIK

Professor Horst Cerjak, 19.12.2005

55

Roderick Bloem V&T 02 Dynamic Algorithms for Concurrency

Conclusions

Dynamic algorithms

• May give false alarms

• May not find all problems

Locktree finds possible deadlocks

Eraser finds possible race conditions

Little dependence on scheduling: Can find bug in 
one scheduling by executing another one: better 
than testing.


