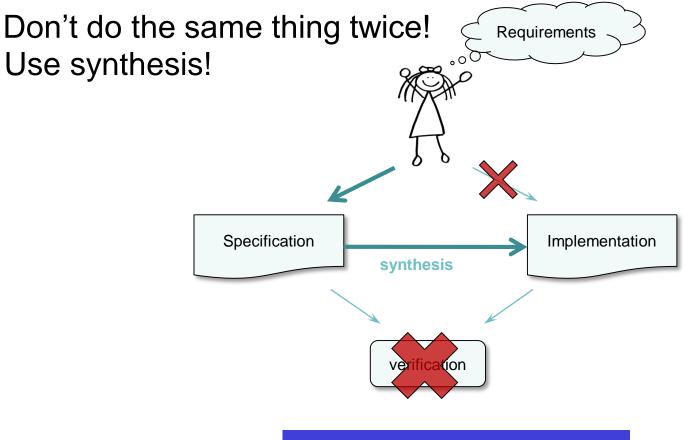


Synthesis

SCOS

1

Construct Correct Systems Automatically



reactive synthesis

Roderick Bloem

SCOS

What Theory Will We Use?

- Games
- Automata
- Logic

Games Examples

- A new Cola market?
 - Coke is ahead of Pepsi makes first decision
 - Market cannot bear two competitors
 - Assumption: game is not repeated
 - Payoff matrix (Coke profit / Pepsi profit)
 - Who will enter the market?

In synthesis, we will look at graph games

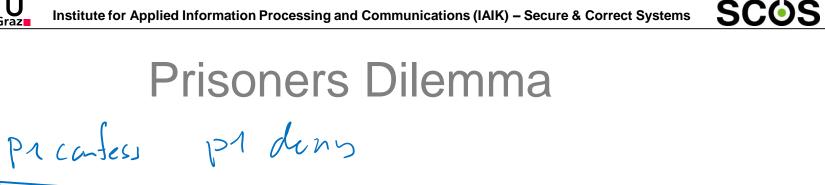
SCOS

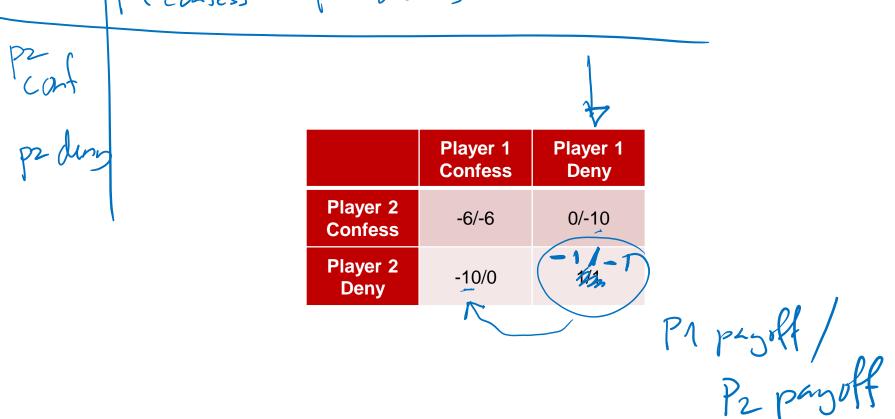
Games Examples

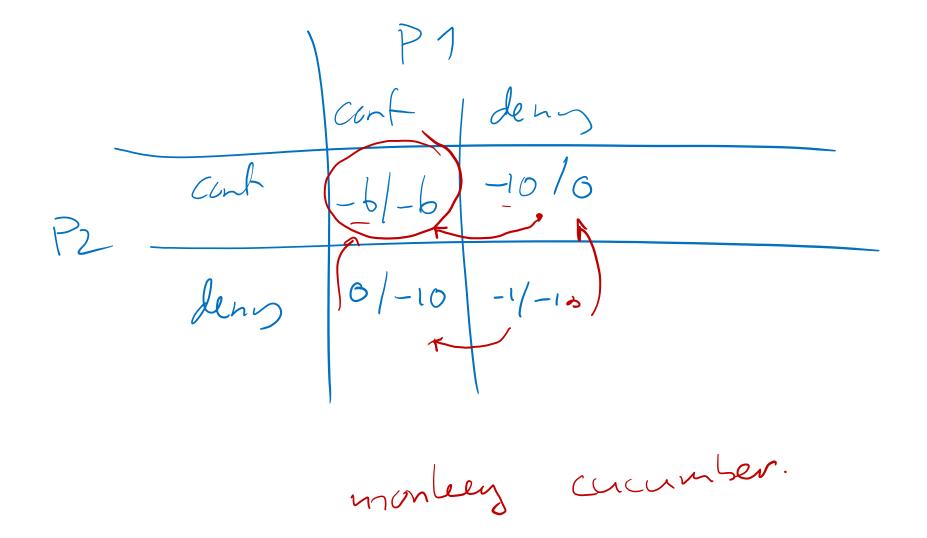
- A new Cola market?
 - Coke is ahead of Pepsi makes first decision
 - Market cannot bear two competitors
 - Assumption: game is not repeated
 - Payoff matrix (Coke profit / Pepsi profit)
 - Who will enter the market?

	Coke	No Coke
Pepsi	-5/-5	0/20
No Pepsi	10/0	0/0

In synthesis, we will look at graph games





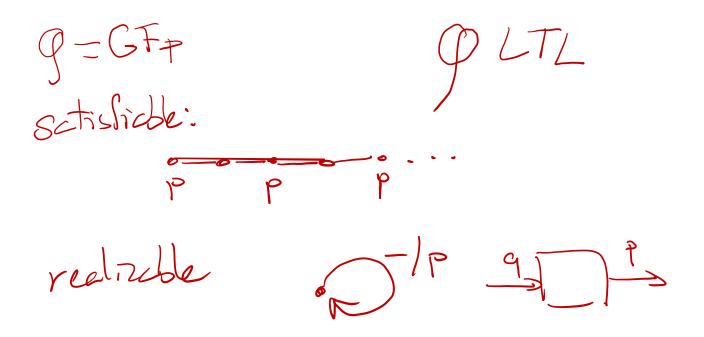


SCOS

Satisfiability & Realizability

Two problems:

- **1. Satisfiability**: Is there a *trace* that satisfies spec?
- 2. **Realizability**: Is there a *system* that satisfies spec?



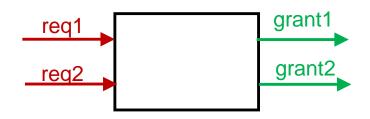
never

Satisfiability & Realizability

Satisfiability: Is there a trace that satisfies the spec? Realizability: Is there a system that satisfies the spec? Realizability \neq Satisfiability

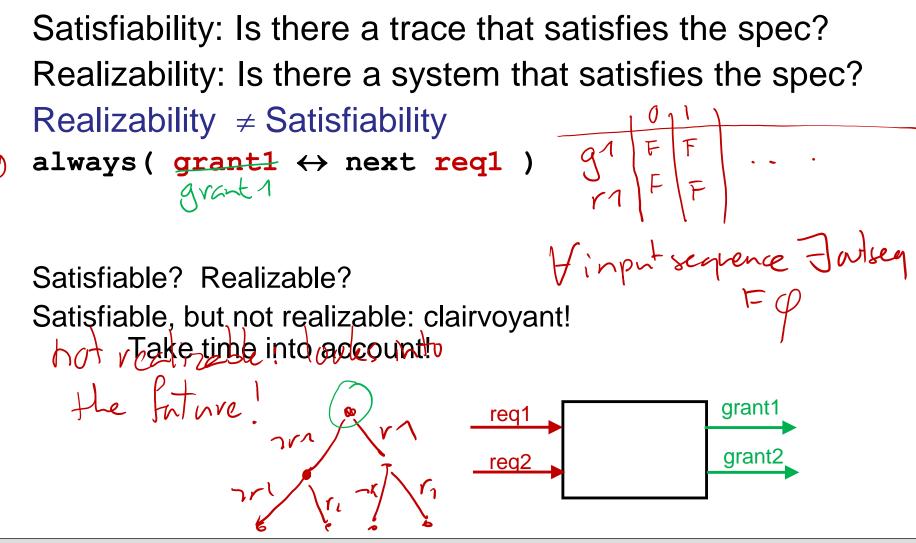
(req1 \rightarrow grant1) \land (req2 \rightarrow grant2)) always(grant1 ^ grant2

 $\mathcal{R}=r^2$ Satisfiable? Realizable? Satisfiable, but functionally impossible Distinguish inputs from outputs!



RATISFIABLE

Satisfiability & Realizability



Synthesis

Formal Verification

Given: System provides outputs A specification

One Player: (not a game!)

Environment provides inputs

System is good if it fulfills the spec for all possible inputs

Synthesis is a Game

Given: System provides outputs A specification

Two Players (a game!)

- Environment provides inputs
- System provides outputs

System is good if it fulfills the spec for all possible inputs

Our Setting

Reactive Systems

- Constant interaction
- No Termination
- E.g. Cell phones, Operating Systems, Powerpoint

Finite State

Non-terminating, finite systems are graphs with loops

- Not our focus: functions
 - "Create a function that computes sqrt(2)"

<u>scos</u>

Example I: Chess

- Environment determines black moves
- System determines white movers
- Winning condition:
 - If all black moves are legal, then all white moves are legal and eventually, white reaches checkmate

Easy to specify!

System

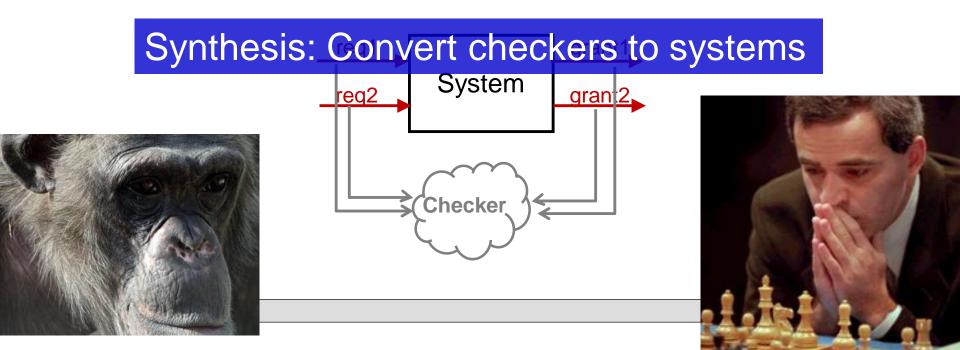
Checkers and Systems

Checkers are passive

Judge if given behavior is allowed (satisfiability) Used in verification

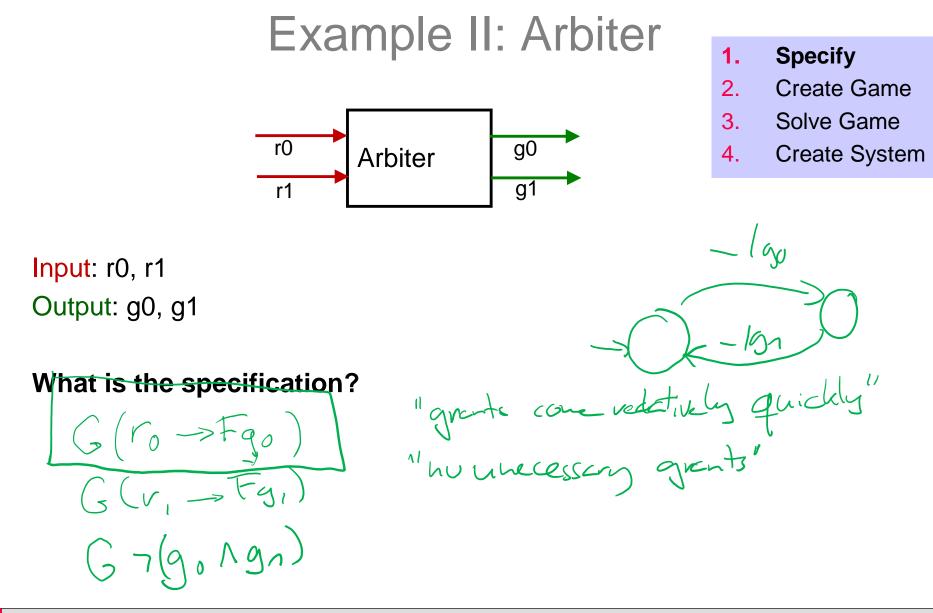
Systems are active

Construct correct behavior (realizability) Result of synthesis



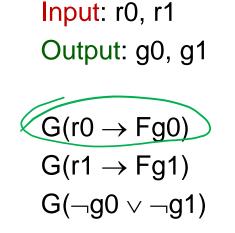
Synthesis

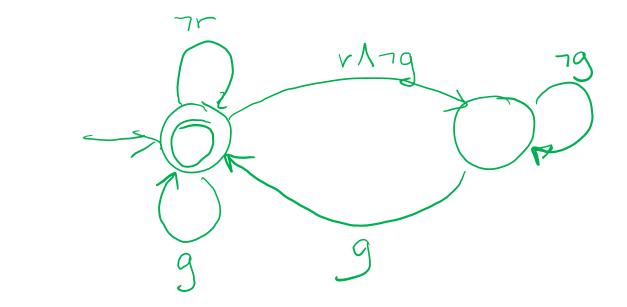
- 1. Specify
- 2. Create Game
- 3. Solve Game
- 4. Create System



Example II: Arbiter

- **1.** Specify
- 2. Create Game
- 3. Solve Game
- 4. Create System





SCOS

Specify

Create Game

Solve Game

Create System

1.

2.

3.

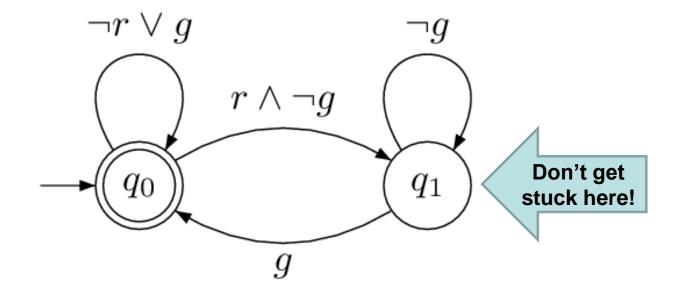
4.

Arbiter Specification

Deterministic Büchi automaton for

 $G(r \to Fg)$

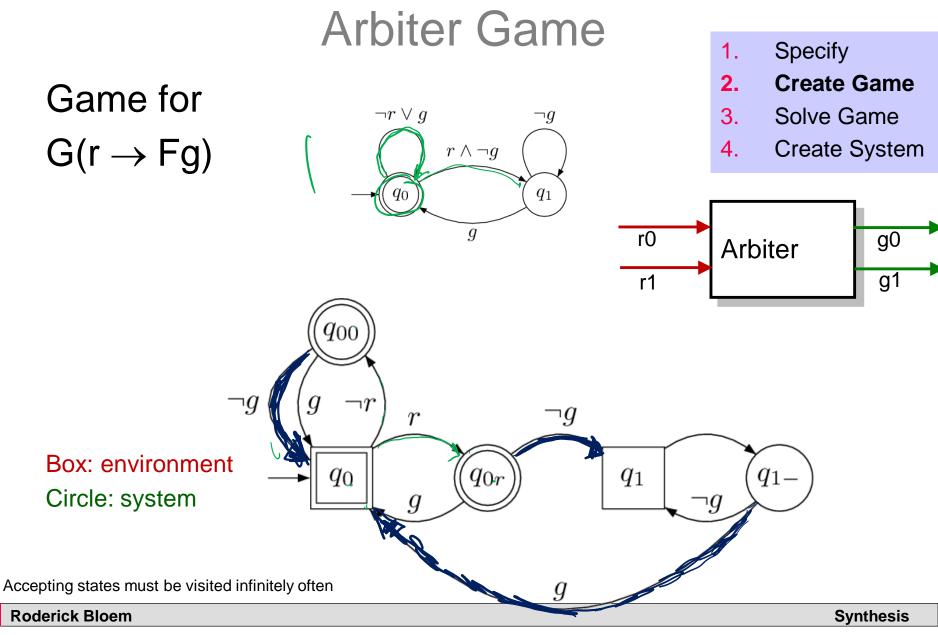
Accepting states must be visited infinitely often



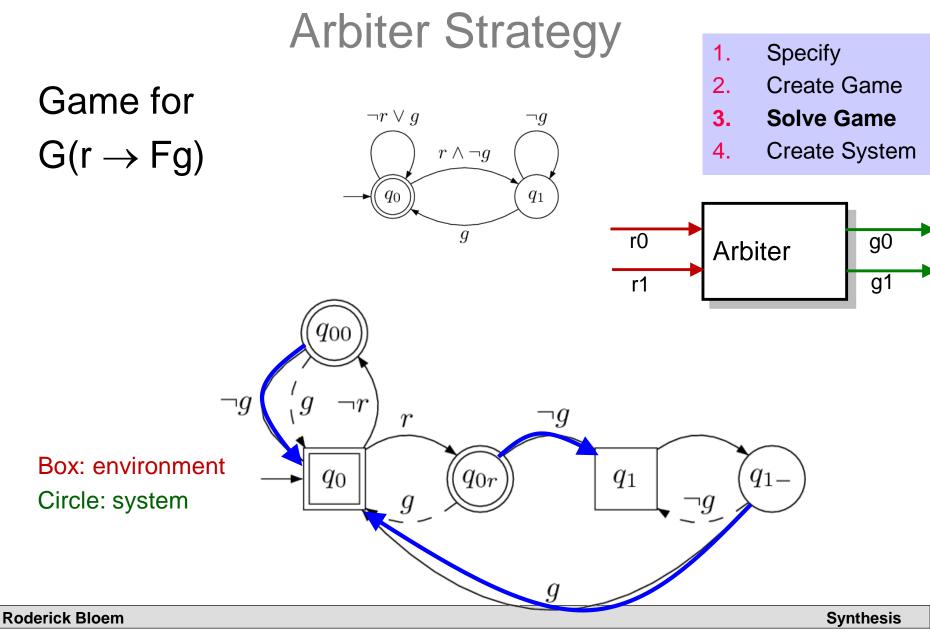
 Δ ccenting s

Roderick Bloem

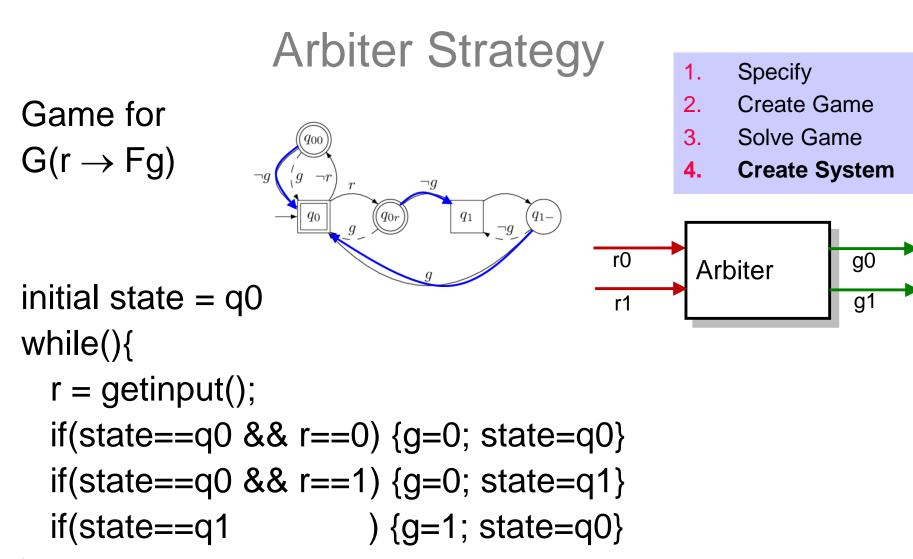
<u>SCOS</u>



<u>SCOS</u>



<u>SCOS</u>



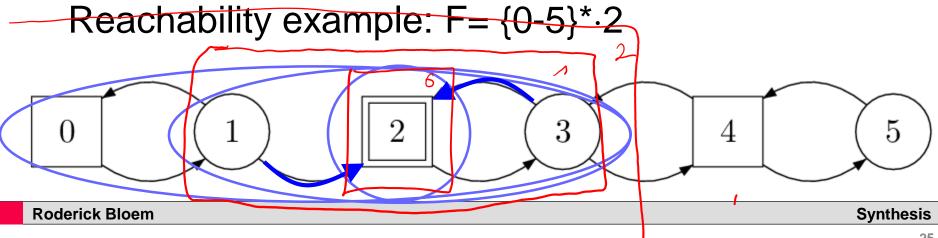
Games

- $G = (V_0, V_1, E, F).$
- V_0 : Player 0 states (circles)
- V_1 : Player 1 states (squares) $V = V_0 \cup V_1$
- $E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0)$ edges
- $F \subseteq (V_0 \cup V_1)^{\omega}$ winning condition
- We want to know from whether (and how!) Player 0 can force a play in *F*.

Games

$$G = (V_0, V_1, E, F).$$

- V_0 : Player 0 states (circles)
- V_1 : Player 1 states (squares) $V = V_0 \cup V_1$
- $E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0)$ edges
- $F \subseteq (V_0 \cup V_1)^{\omega}$ winning condition



SCOS

$$\begin{aligned} & \text{Reachability Game} \\ & pre(C) = \{ q \mid q \in V_0 \land \exists q'. (q, q') \in E \land q' \in C \} \lor \\ & \{ q \mid q \in V_1 \land \forall q'. (q, q') \in E \rightarrow q' \in C \} \end{aligned}$$

Reachability game with goal F:

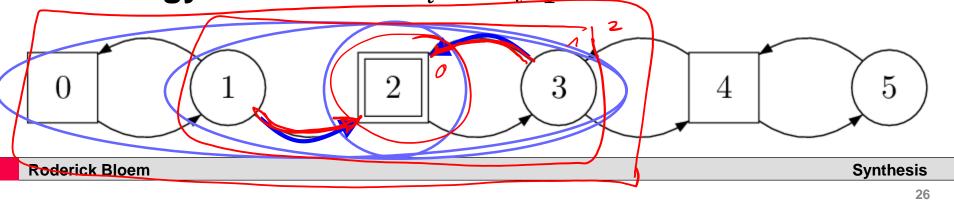
$$W_{0} = F$$

$$W_{i} = W_{i-1} \cup \underline{pre(W_{i-1})}$$

$$W = \bigcup W_{i}$$

$$F$$

Let's call this rch(C) = W Strategy: Move from W_i to W_{i-1}



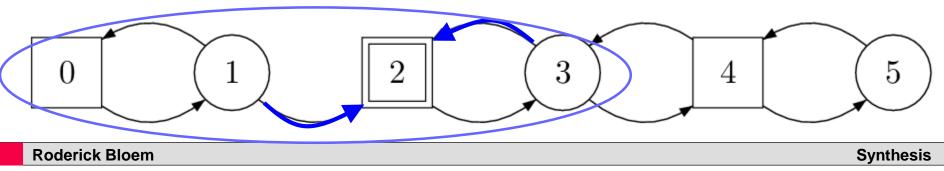
SCOS

Terminology

```
Play Sequence \pi=q0q1q2... \in V<sup>\omega</sup> s.t. (qi,qi+1) \inT
Play is winning if \pi \in F.
```

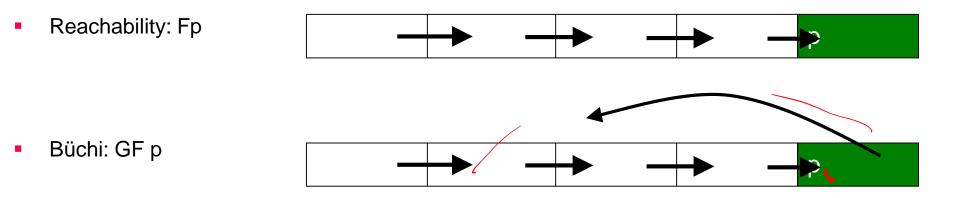
```
Strategy Function \sigma: V^* \cdot V0 \rightarrow V
```

Play adheres to σ if for all prefixes q0...qi with qi \in V0, we have qi+1 = $\sigma(q0,...,qi)$

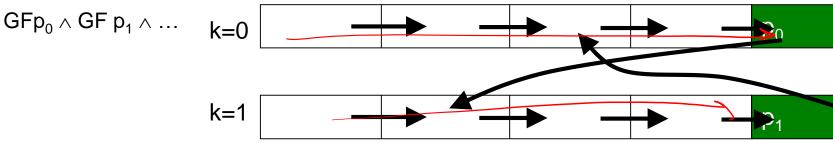


SCOS

More General Games



Generalized Büchi:



Symbolic Games

 $pre(C) = \{q \mid q \in V_0 \land \exists q'. (q, q') \in E \land q' \in C\} \lor \{q \mid q \in V_1 \land \forall q'. (q, q') \in E \rightarrow q' \in C\} \lor pre(C)(W) \neq V_0(\chi) \land \exists \chi'. P(\chi, \chi') \land C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \lor V_0(\chi) \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \land \forall \chi'. P(\chi, \chi') \land \forall \chi'. P(\chi, \chi') \rightarrow C(\chi') \land \forall \chi'. P(\chi, \chi') \land \forall \chi'. P(\chi') \land \forall \forall \chi'. P(\chi') \land \forall \chi'. P(\chi') \land \forall \chi'. P(\chi$

Symbolic Games

 $X = \{x_1, \dots, x_n\}$ system variables V_0 is a Boolean formula over X: system states $V = \neg V_0$: environment statesR is a Boolean formula over X and X'

$$pre(C) = \{q \mid q \in V_0 \land \exists q'. (q, q') \in E \land q' \in C\} \lor \{q \mid q \in V_1 \land \forall q'. (q, q') \in E \rightarrow q' \in C\}$$

$$pre(C)(X) = V_0 \land \exists X'. C(W') \land R(X, X') \lor V_1 \land \forall X'. R(X, X') \rightarrow C(X')$$

Symbolic Game

Reachability game with goal F:

```
W = F;
while W changes do
W = W \lor pre(W)
```

What kind of solver do we use?

Selecting One Implementation

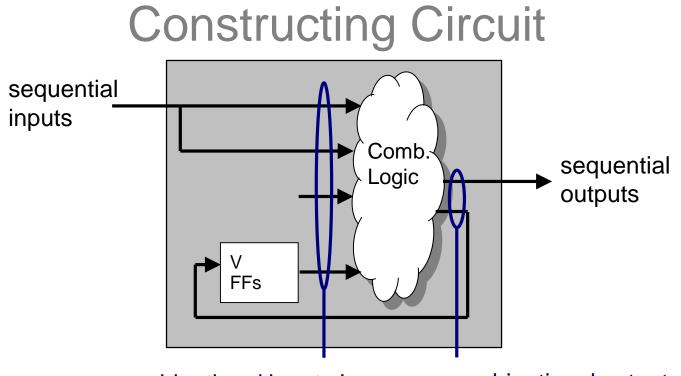
Specification = Set of sequential circuits

Strategy = Set of combinational circuits

Construction of circuit

One combinational circuit

Less freedom Fewer circuits More complexity



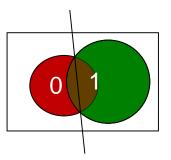
combinational inputs I

combinational outputs O

- Spec is given in terms of sequential inputs and outputs
- Flipflops keep track of state of specification automata (state space of game)
- Strategy is relation between combinational inputs and combinational outputs: $R \subseteq I \; X \; O$
- A circuit is a function f: $I \rightarrow O$

From BDD to Circuit

Relation Solving



Given: Strategy R: I x O **Find**: function f: I \rightarrow O such that if f(i) = 0 then (i,0) \in R

Multiple possibilities lead to wildly different sizes in circuits

Back to Theory

- Automata Theory
 - For Games
- Logics
 - For the Spec: Temporal Logic
 - For the Solution: Automatic Solvers
 - Quantifiers?

 $\forall i \exists o. \varphi$

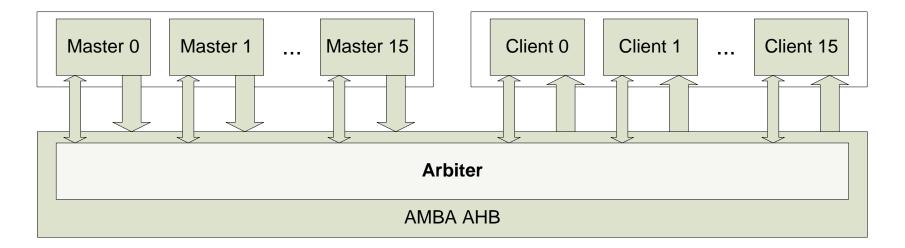
Non-Boolean logics?

Example III: AMBA

<u>SCOS</u>

AMBA Bus

- Industrial standard
- ARM's AMBA AHB bus
 - High performance on-chip bus
 - Data, address, and control signals (pipelined)
 - Arbiter part of bus (determines control signals)
 - Up to 16 masters and 16 clients



SCOS

AMBA Bus

- Master initiates transfer. Signals:
 - HBUSREQi
 - HLOCKi
 - HBURST
- Master i wants the bus
- Master i wants an uninterruptible access
- This access has length 1/4/incr
- address & data lines
- The arbiter decides access
 - HGRANTi

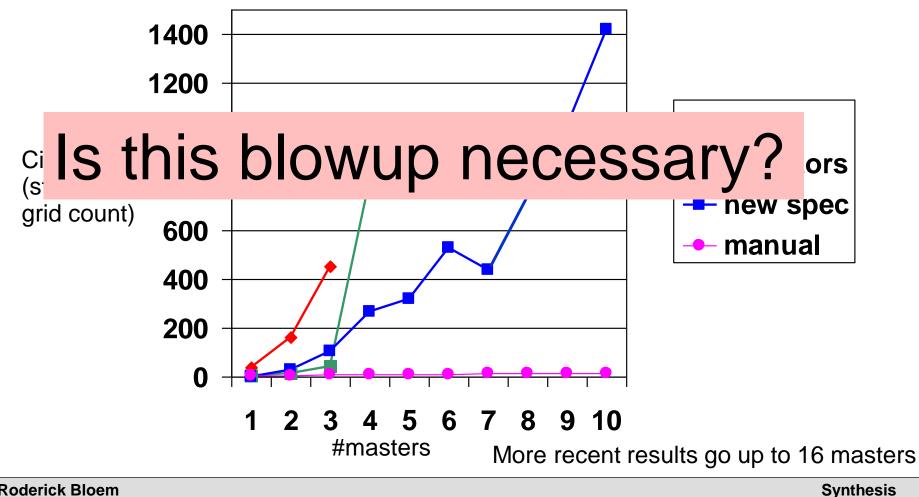
- Next transfer for master i
- HMASTER[..] Currently active master
- HMASTLOCK Current access is uninterruptible
- The clients synchronize the transfer
 - HREADY Ready for next transfer
- Sequence for master
 - Ask; wait for grant; wait for hready; state transfer type & start transfer

AMBA Arbiter

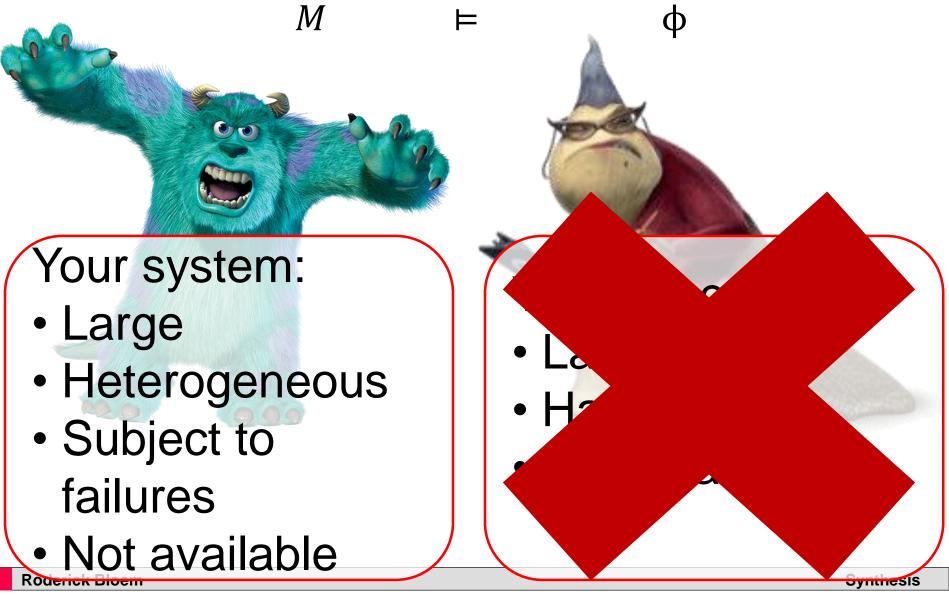
- Specification
- 3 Assumptions, 12 Guarantees.
- Example:

"When a locked unspecified length burst starts, new access does not start until current master (i) releases bus by lowering HBUSREQi."

 \bigwedge_{i} G(HMASTLOCK \land HBURST=INCR \land HMASTER=i \land START \rightarrow X(¬START U ¬HBUSREQi))



Application Example: Shields



Your system:

- Large
- Heterogeneous
- Subject to failures
- Not available

Critical spec:

- Critical aspects only
- Small & sweet

© Disney

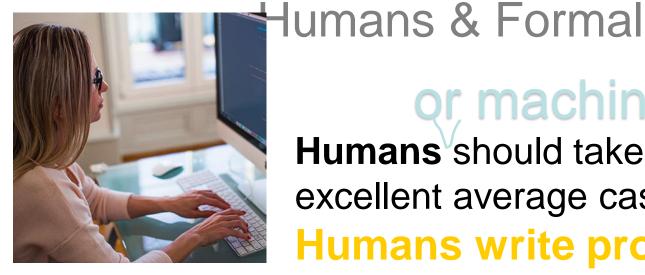
oynmesis

Institute for Applied Information Processing and C

Some Systems

Applications

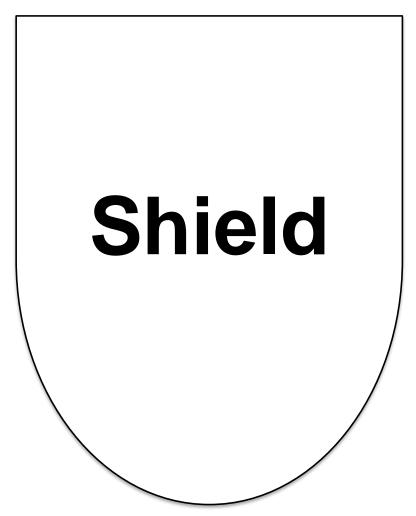
- Complicated systems
- Heterogeneous systems
- Third-Party IP
- Soft Errors
- Uncertified systems



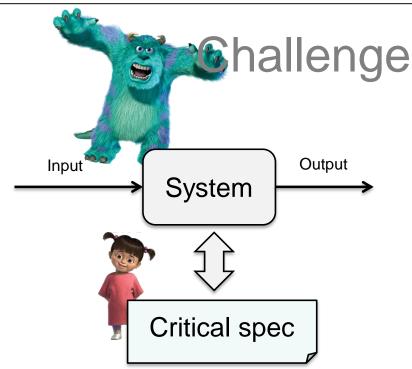
or machine learning Humans^Vshould take care of excellent average case behavior Humans write programs

Formal should take care of acceptable worst case Formal makes sure they are right at runtime

SCOS



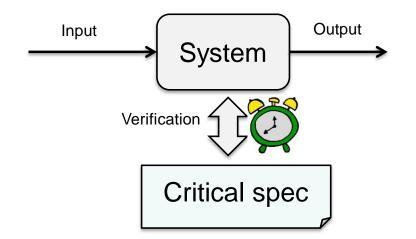
SCOS



System: complicated

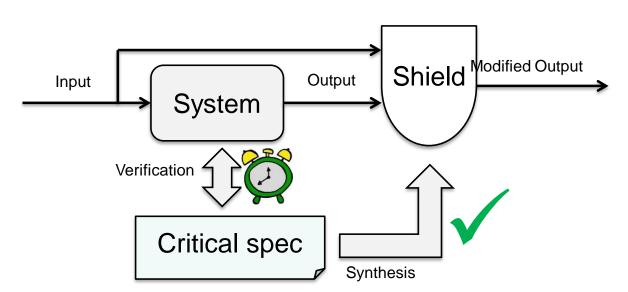
Critical specification: simple safety property

Challenge



Verification inconclusive:

- System too complicated
- ... but we need absolute certainty of critical spec



Synthesize a "safety shield" Scalable because critical spec is small

Trafictec CMU Conflict Monitor Unit

Monitors selected traffic controller channels for conflicts.

Goals:

- 1. Generate automatically
- 2. Independent of system
- 3. Smarter than going to failsafe

General

The Trafictec CMU Conflict Monitor Unit, which is optional for use with the SBC-2400 Traffic Control System, monitors selected traffic signal controller channels for conflicts. There are 8 input lines and 6 CMU channels. Two sets of input lines are tied together, forming a single signal group (i.e., Green and Walk) that can be monitored as one channel. When two channels are in conflict, the CMU will activate a conflict signal. This signal is read by the traffic controller, which will then place the intersection in flash. The conflict signal is latched and can only be cleared by a manual reset. The latching relay maintains the fault status during a power outage.

Synthesis

http://www.zwiesler.com/sbc2400/cmu_conflict_monitor.htm

Crucial Properties

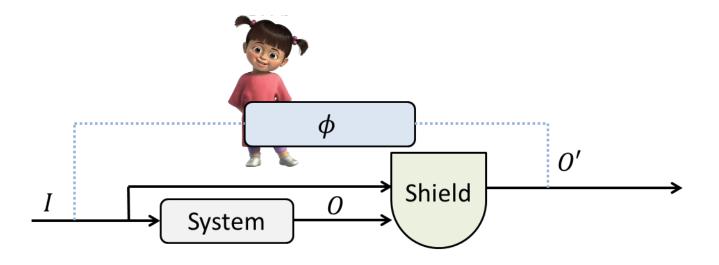
Shielded system satisfies specification

2. Generic

1. Correct

Shield does not depend the system implementation

3. Reacts on-the-fly, no delay



Crucial Properties

Shielded system satisfies specification

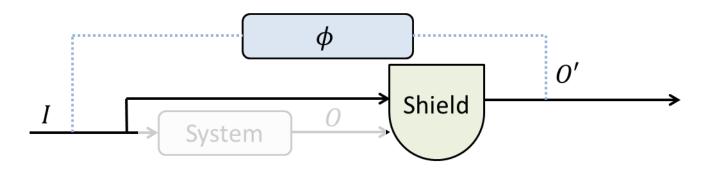
2. Generic

1. Correct

Shield does not depend the system implementation

3. Reacts on-the-fly, no delay

Shield could ignore system!



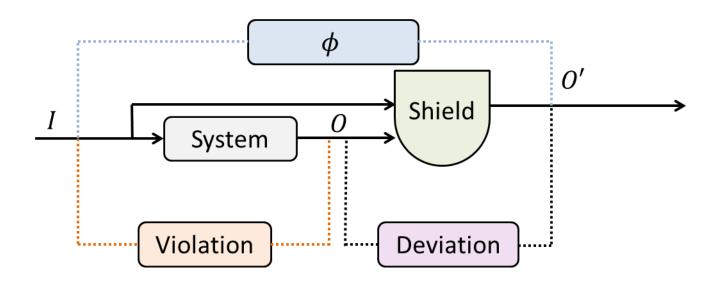
Minimum Interference: Properties

1. Deviate only if necessary

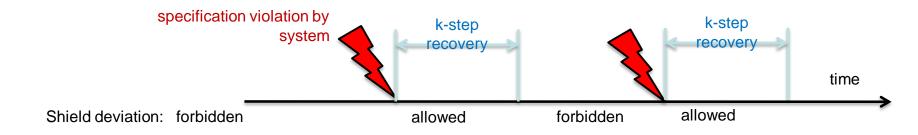
Retain non-critical properties if system OK

2. Deviate as little as possible

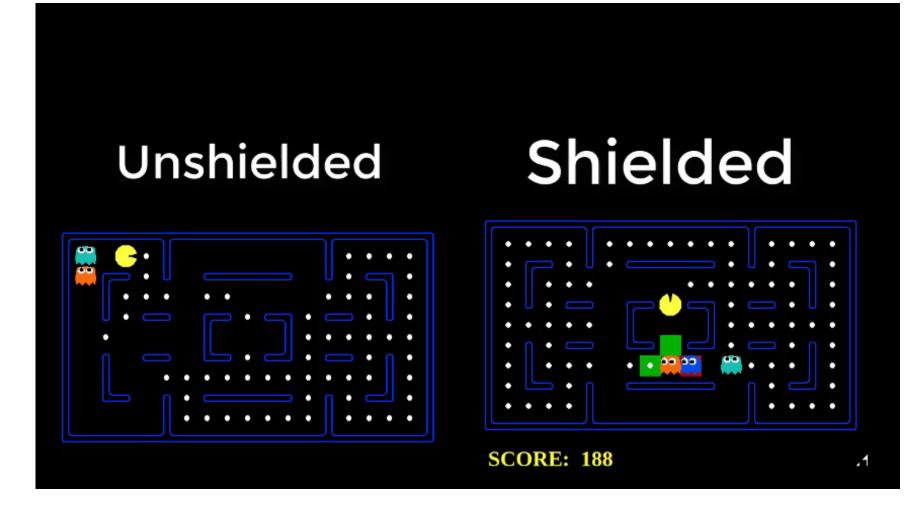
likely retain non-critical properties if system fails



Deviation allowed up to k steps after violation



What does it mean to have multiple failures?



SCOS

Organizational

Number	Date	Lecturer	Chapter
1	2020-03-10	Roderick Bloem	Introduction
2	2020-03-17	Bettina Könighofer	Bounded Synthesis, safety only
3	2020-03-24	Vedad Hadzic	Introduction SMT (Z3)
4	2020-03-31	Bettina Könighofer	SMT – Theory
5	2020-04-21	Masoud Ebrahimi	LTL
6	2020-04-28	All SCOS members	Presentations Exercise 1 by Students
7	2020-05-05	Benedikt Marderbacher	Omega Autmomata
8	2020-05-12	Benedikt Marderbacher	Bounded Synthesis
9	2020-05-19	Bettina Könighofer	Synthesis via Games, Games 1
10	2020-05-26	Bettina Könighofer	Synthesis via Games, Games 2
11	2020-06-09	Roderick Bloem	Relation Determinization
12	2020-06-16	All SCoS Members	Research
13	2020-06-23	All SCoS Members	Presentations Exercise 2 by Students

Time Line

- Lecture: 120 minutes
 - **10:00-11:00**
 - 15 minute break
 - 11:15-12:15
 - Or not??
- Interactive!
- Exam will be waived for those who participate actively
- Uebung
 - Pencil and Paper take-home exercises

Corona?

