Binary Decision Diagrams and
Symbolic Model Checking

Chapter 8

Model Checking

Binary Decision Diagrams and
Symbolic Model Checking

8.1 Representing Boolean Formulas

8.2 Representing Kripke Structures with OBDDs
8.3 Symbolic Model Checking for CTL

8.4 Fairness in Symbolic Model Checking

8.5 Counterexamples and Witnesses

8.6 Relational Product Computations

Representing Boolean Formulas

Chapter 8 Model Checking

Binary Decision Trees

f — (a1<—>b1) N (az(_)bz) 0 1

0/ \1 0/ \1l 0/ \1 0/ \1
o/ \1 0/ \1 O/ \1 O/ \1 O/ \1 O/ \1 0O/ \1 O/ \1

Loy (O Ly {0} (O] (O] O}]0] (O] O O |1] (O] O] |1

Chapter 8 Model Checking

Binary Decision Trees
* Graphical representation for a Boolean formula
* Two kinds of nodes: nonterminals and terminals

* Nonterminal nodes are labeled with a variable,
edges are labeled with O or 1

* One node is the root

Semantics of Binary Decision Trees

Start at the root

2. Consider the variable in the
node

3. Follow the edge that assigns
the desired truth value to the
variable

The value of the function is
given by the terminal

for a;~1, b,;~0, a,~1, b,~1

Variable Ordering in Binary Decision Trees

Observe that the ordering of the
variables on all paths from the
root to a terminal is the same

The decision tree is ordered

Chapter 8 Model Checking

Redundancy in Binary Decision Trees

f — (al<—>b1) N (az(_)bz) 0 1

Chapter 8 Model Checking

Sharing Tree Nodes
* Decision trees can be highly redundant
* |dea: identify parts of the tree that are identical

* Replace a duplicate by a pointer or reference

= (a;—by) A (8,0,

Chapter 8

Removing Redundancy

Model Checking

10

= (a;—by) A (8,0,

Chapter 8

Removing Redundancy

Model Checking

11

= (a;—by) A (a,0)

Chapter 8

Removing Redundancy

Model Checking

12

Removing Redundancy

CCCCCCC 8 Model Checking

Removing Redundancy

f — (al<—>b1) N (3.2<—>b2) 0 1

())

CCCCCCC 8 Model Checking

= (a;—by) A (a,0)

Removing Redundancy

")

Chapter 8

Model Checking

15

Removing Redundancy

CCCCCCC 8 Model Checking

Reducing Binary Decision Diagrams

* Remove duplicate terminals
* Remove duplicate nonterminals
* Remove redundant tests

Reduced BDDs fulfill:
* Each variable appears at most once along every path from root to leaf
* The variables appear in the same order along every path from root to leaf

* The graph does not contain
e isomorphic sub-graphs
* Redundant nodes

Reducing Binary Decision Diagrams

* After removing

e Canonical representation for Boolean formulas
=Equivalent formulas have the same representation
=Test for equivalence can be done in O(1) time

e Often very compact

e Efficient algorithms for computing pre- and post-images

Order of Variables in the BDD

° f (al:bb aZ) bZ) — (al © bl) A (aZ < bZ)
 Which variable order should we use?

A A

1 7 2
b'ﬂ :)o/‘ A &1\2_

N, ST

/@L\]:31 (o\ \’f \\\

\}o ,/ /
,]o’)/ ,/ 5/\ O \ (j \ é ()
N 0 b, -2
4 / \ ,/\ / \
\ C) p O

P

Model Checking

Order of Variables in the BDD

* f (all bl) a,, bZ) — (al < bl) A (aZ < bZ)
* variable order a,<b,<a,<b,:

Order of Variables in the BDD
* In the general case: a,<b,<a,<b,<....<a,<b,
* fla,b,...,.a,b.)=(a,Bb,) & ..0E(ab,)
* BDD with 3n+2 nodes

Order of Variables in the BDD

* f (alfle aZ) bZ) — (al < bl) A (aZ < bZ)
* variable order a,<a,<b,<b,
* In general, we need...

/Iod; Chg¢cking

Operations on BDDs - Apply

* Gets two BDDs, representing functions f and f’ and an operation *
* Over the same variable ordering

e Returns the BDD representing f*f’
* * can be any of 16 binary operations on two Boolean functions
e Bdds are built recursively

0
°1

 |ITE(topvar, left, right) @

“
.
L J
.
L
“
A

fleft f.right

Model Checking

23

Chapter 8

bddand

f.left f.right g.left g.right

Model Checking

24

bddand (f, g)

Operations on BDDs - And

Model Checking

25

Operations on BDDs - And

bddand (£, g)
1f f==0 || g==0 return O
1f f==1 return g
1f g==1 return £
1f f==g return g
1f (f.topvar == g.topvar)

return bddite (f.topvar, bddand(f.left,
bddand (f.right, g.right))

Model Checking

g.left),

26

BDD Operations
 Boolean operations f * g can be performed intime O(|f] - |g|)

e Other important operations:
 bddcofactor(f, v, b) = f],=; (replace all\occurrences of var v by value
b)
* (XANYV XANZ)|yeo=0AYyVIANZ=12Z
* (XAYV XxNANZ) |y = LAPVOAZ=Yy
* bddexists(v,f) =3v. f = f|,—0 V fly=1
o [Ax. (X NYM =X ANZ)|peg=Y V Z

BDD Operations
 Boolean operations f * g can be performed intime O(|f] - |g|)

* Other important operations:

* bddcofactor(f, v, b) = f|,=; (replace all occurrences of var v by value
b)

* bddexists(v,f) =3v. f = f|,—0 V flv=1

Chapter 8

Representing Kripke Structures with OBDDs

Model Checking

29

Example from SAT chapter

(3.,

pathy(sg, $1,52) = So(So) A R(Sq,51) AR(sy,52)
SO (vo, vl) = Vg A V; = oo A V10 A

, , , , _IUOO /\ _Ivlo /\ 1201 /\ —|1211

R(vg, v1,v4, V1) = U9 A =01 Ay A =1y
V vy A—av; Avg ’

V vy Avg A vy A vy

V vy Avy Avy A vy V' Voo A V1o A Vo1 A V13

V 1]00/\ —|1]10 /\ 1]11

V _IUOO /\ vlo /\ _Iv01 /\ —|v11

a(vy, v1) = vy V vy

k
. . —=a(s;) = a(—vygy V v V a(=vg1 Vv
https://eecs.ceas.uc.edu/~weaversa/BDD_Visualizer.html \/ (5:) (=09 10) V (v 11)
i=0
Chapter 10 Model Checking 30

Symbolic Model Checking for CTL

CCCCCCC 8 Model Checking

Symbolic (BDD-based) model checking

 BDD-based model checking manipulates set of states
* BDD efficiently represents Boolean function that represents set

* Implement breadth-first search
* Many algorithms reminiscent of explicit state

Model Checking

32

Operations on sets

 Union of sets = v (or) over their BDDs
* Intersection = A (and)
 Complementation = — (not)

e Equality of sets = <« (iff)

33

BDD-based Model Checking

* Accept: Kripke structre M, CTL formula f
* Returns: S; - the set of states satisfying f

M is given by:
 BDD R(V,V’), representing the transition relation

* BDD p(V), for every pe AP, representing S,
* the set of states satisfying p

*V={(vy..v,)

34

BDD-based Model Checking

* The algorithm works from simpler formulas to more complex ones
* When a formula g is handled, the BDD for S, is built
* A formula is handled only after all its sub-formulas have been handled

35

BDD-based Model Checking
* For pe AP, return WC (P>
* Forf=f,Af,, return f/\ /\—Fz

* For f = —f,, return o V/)

Model Checking

36

BDD-based Model Checking

* For pe AP, return p(V)
* For f=f, A f,, return f(V) = f,(V) A f,(V)
* For f = —f,, return f(v) = = f,(V)

Model Checking

37

Example from SAT chapter

7\ EK("V/\)

So(lég, vl) = Vg N V1

o zgﬂ”"“”i“ o A = > For f=EXTf, return
V !/

V vy Ay A vy A g

2
Vg Avy A vy AV,)\—ﬂ/, 3\)()’ VAI . [\—" \'//l/ /\ %\/’ \/LH

a(vy,v1) = vy V vy (\ J

Chapter 10 Model Checking 38

BDD-based Model Checking

* Fo

f(V) =3V [£,(V') AR(VV')]

* This BDD represents all (encoding V of) states that
have a successor (with encoding V') in f,

Model Checking

39

* Defined as a new BDD operator:
EXF (V) =3V [(V')A R(V,V)]

* This operation is also called pre-image or Pred

* [mportant:
the formula defines a sequence of BDD operations and therefore is
considered as a symbolic algorithm

Model Checking

40

Note: s E EF p iff

Example: f=EFg

Model Checking

41

BDD-based Model Checking for f=EF g

Given: BDDsRand S, :
procedure CheckEF (S,)

Q:=_,; Q' :=,;
While Q# Q" do

end while
S;:=Q; return(S;)

Model Checking

42

BDD-based Model Checking for f=EF g

Given: BDDs R and Sg:

procedure CheckEF (S,)
Q:=emptyset; Q' :=S;;
while Q# Q" do
Q:=Q);
Q :=QVEX(Q)
end while
S;:=Q; return(S;)

Model Checking

43

The algorithm applies
* BDD operations (or v), and EX
e comparison Q(V) = Q’(V) (easy)

Therefore, this is a symbolic algorithm!

Model Checking

44

Model Checking M |=f (cont.)

* We compute subformula g of f after all subformulas of g have
been computed

* For subformula g, the algorithm returns the set of states that
satisfy g (S,)

45

Model Checking f = E[g, U g,]

Given: a model M and the sets S and S of states
satisfying g, and g, in M

procedure CheckEU (S, , S,)
Q := emptyset; Q' := ng ;
while Q= Q" do
Q:=Q}
Q' :=
end while

S;:=Q; return(Sy)

Model Checking

46

Model Checking f = E[g, U g,]

Given: a model M and the sets S and S of states
satisfying g, and g, in M

procedure CheckEU (S, , S,)
Q := emptyset; Q' := ng ;
while Q= Q" do
Q:=Q5
Q :=Q"V/(5;, NEX(Q))
end while

S;:=Q; return(Sy)

Model Checking

47

EGp

-

Example: f

Note: s F EG p iff

48

Model Checking f=EG g
CheckEG gets M and S, and returns S;

procedure CheckEG (S,)

QSQ

while Q;t Q' do

S;:=Q; return(S;)

EF and EG are similar
CheckEG gets M and S, and returns S;

procedure CheckEG (S,) procedure CheckEF (Sg)

Q:=5; Q' :=S,; Q:=0; Q' :=5g;
while Q= Q' do while Q= Q" do
Q:=Q] Q:=Q’;
Q' :=QANEX(Q) Q' :=QvEX(Q)
end while end while
S;:=Q; return(S;) Sf:=Q; return(Sf)
EGEXECT ¥

(
Model Checking (L JJ 50

Deadline: 24.6. 4:00pm
Sent soluti elcheckin;

Given the following synchronous c

vl D
0 H>e—

The initial value of the state varia

unknown.
Chapter 8

Homework

Task 1a. [4 Points]

Show the BDD for the transition relation. Use the variable ordering v2’, v2, v1, v1’, vO, vO’

Task 1b. [4 Points]

Draw the Kripke Structure M = (S, So, R, AP, L) that represents C. (Hint: see Homework 1.)

Show the iterations of the computation of the formula EG—15. (You can show the iterations
graphically, or you can give a sequence of sets of states. You don’t need to draw any BDDs.)

Task 1c. [2 Points]

Show which states fulfil the formula EF EG—v5.

Model Checking

51

Chapter 8

Fairness in Symbolic Model Checking

Model Checking

52

Chapter 8

Counterexamples and Witnesses

Model Checking

53

Chapter 8

Relational Product Computations

Model Checking

54

