Binary Decision Diagrams and Symbolic Model Checking

Chapter 8

Binary Decision Diagrams and Symbolic Model Checking

- 8.1 Representing Boolean Formulas
- 8.2 Representing Kripke Structures with OBDDs
- 8.3 Symbolic Model Checking for CTL
- 8.4 Fairness in Symbolic Model Checking
- 8.5 Counterexamples and Witnesses
- 8.6 Relational Product Computations

Representing Boolean Formulas

Binary Decision Trees

Binary Decision Trees

Graphical representation for a Boolean formula

• Two kinds of nodes: nonterminals a_1 and terminals 1

 Nonterminal nodes are labeled with a variable, edges are labeled with 0 or 1

One node is the root

Semantics of Binary Decision Trees

- 1. Start at the root
- 2. Consider the variable in the node
- 3. Follow the edge that assigns the desired truth value to the variable

The value of the function is given by the terminal

$$f = 0$$
 for $a_1 \mapsto 1, b_1 \mapsto 0, a_2 \mapsto 1, b_2 \mapsto 1$

Variable Ordering in Binary Decision Trees

Observe that the ordering of the variables on all paths from the root to a terminal is the same

The decision tree is ordered

$$a_1 < b_1 < a_2 < b_2$$

Redundancy in Binary Decision Trees

Sharing Tree Nodes

Decision trees can be highly redundant

Idea: identify parts of the tree that are identical

Replace a duplicate by a pointer or reference

Reducing Binary Decision Diagrams

- Remove duplicate terminals
- Remove duplicate nonterminals
- Remove redundant tests

Reduced BDDs fulfill:

- Each variable appears at most once along every path from root to leaf
- The variables appear in the same order along every path from root to leaf
- The graph does not contain
 - isomorphic sub-graphs
 - Redundant nodes

Reducing Binary Decision Diagrams

- After removing
- Canonical representation for Boolean formulas
 - ⇒Equivalent formulas have the same representation
 - ⇒Test for equivalence can be done in O(1) time
- Often very compact

Efficient algorithms for computing pre- and post-images

- $f(a_1, b_1, a_2, b_2) = (a_1 \leftrightarrow b_1) \land (a_2 \leftrightarrow b_2)$
- Which variable order should we use?

- $f(a_1, b_1, a_2, b_2) = (a_1 \leftrightarrow b_1) \land (a_2 \leftrightarrow b_2)$
- variable order $a_1 < b_1 < a_2 < b_2$:

• In the general case: $a_1 < b_1 < a_2 < b_2 < \dots < a_n < b_n$

•
$$f(a_1,b_1,...,a_n,b_n) = (a_1 @b_1) @ ... @ (a_n @b_n)$$

- $f(a_1, b_1, a_2, b_2) = (a_1 \leftrightarrow b_1) \land (a_2 \leftrightarrow b_2)$
- variable order $a_1 < a_2 < b_1 < b_2$

Operations on BDDs - Apply

- Gets two BDDs, representing functions f and f' and an operation *
 - Over the same variable ordering
- Returns the BDD representing f*f'
- * can be any of 16 binary operations on two Boolean functions

bddand

Fleftigleft f.

firight a ginght

Operations on BDDs - And

bddand(f,g)

Operations on BDDs - And

```
bddand(f,g)
   if f==0 || q==0 return 0 \checkmark
   if f==1 return g√
   if q==1 return f
   if f==g return g
  if(f.topvar == g.topvar)
        return bddite(f.topvar, bddand(f.left, g.left),
        bddand(f.right, g.right))
   if(f.topvar < g.topvar)</pre>
        return bddite(f.topvar, bddand(f.left, g), bddand(f.right, g))
   if (f.topvar > q.topvar)
        return bddite(f.topvar, bddand(f.left, g), bddand(f.right, g))
```

BDD Operations

- Boolean operations f * g can be performed in time $O(|f| \cdot |g|)$
- Other important operations:
- bddcofactor(f, v, b) = $f|_{v=b}$ (replace all occurrences of var v by value = z
 - $(x \wedge y \vee \neg x \wedge z)|_{x=0} = 0 \wedge y \vee 1 \wedge z = z$ $(x \wedge y \vee \neg x \wedge z)|_{x=1} = 1 \wedge y \vee 0 \wedge z = y$
- bddexists(v,f) = $\exists v. f = f|_{v=0} \lor f|_{v=1} \lor (x \land y) \lor (x \land z)|_{v=0} = y \lor z$

BDD Operations

• Boolean operations f * g can be performed in time $O(|f| \cdot |g|)$

- Other important operations:
- bddcofactor(f, v, b) = $f|_{v=b}$ (replace all occurrences of var v by value b)

• bddexists(v,f) = $\exists v. f = f|_{v=0} \lor f|_{v=1}$

Representing Kripke Structures with OBDDs

Example from SAT chapter

$$S_0(v_0, v_1) = \neg v_0 \land \neg v_1$$

$$R(v_{0}, v_{1}, v_{0}', v_{1}') = \neg v_{0} \land \neg v_{1} \land v_{0}' \land \neg v_{1}'$$

$$\lor v_{0} \land \neg v_{1} \land v_{1}'$$

$$\lor \neg v_{0} \land v_{1} \land \neg v_{0}' \land \neg v_{1}'$$

$$\lor v_{0} \land v_{1} \land v_{0}' \land v_{1}'$$

$$a(v_0, v_1) = \neg v_0 \lor \neg v_1$$

$$path_{1}(s_{0}, s_{1}, s_{2}) = S_{0}(s_{0}) \wedge R(s_{0}, s_{1}) \wedge R(s_{1}, s_{2})$$
$$= \neg v_{0,0} \wedge \neg v_{1,0} \wedge$$

$$\begin{pmatrix} \neg v_{00} \wedge \neg v_{10} \wedge v_{01} \wedge \neg v_{11} \\ \vee v_{00} \wedge \neg v_{10} \wedge v_{11} \\ \vee \neg v_{00} \wedge v_{10} \wedge \neg v_{01} \wedge \neg v_{11} \\ \vee v_{00} \wedge v_{10} \wedge v_{01} \wedge v_{11} \end{pmatrix}$$

https://eecs.ceas.uc.edu/~weaversa/BDD_Visualizer.html
$$\bigvee_{i=0}^{\kappa} \neg a(s_i) = \neg (\neg v_{00} \lor \neg v_{10}) \lor \neg (\neg v_{01} \lor \neg v_{11})$$

Chapter 10 Model Checking 30

Symbolic Model Checking for CTL

Symbolic (BDD-based) model checking

- BDD-based model checking manipulates set of states
 - BDD efficiently represents Boolean function that represents set
- Implement breadth-first search
- Many algorithms reminiscent of explicit state

Operations on sets

- Union of sets $\Rightarrow \lor$ (or) over their BDDs
- Intersection $\Rightarrow \land$ (and)
- Complementation $\Rightarrow \neg$ (not)
- Equality of sets $\Rightarrow \leftrightarrow$ (iff)

BDD-based Model Checking

- Accept: Kripke structre M, CTL formula f
- Returns: S_f the set of states satisfying f

M is given by:

- BDD R(V,V'), representing the transition relation
- BDD p(V), for every p∈ AP, representing S_p
 - the set of states satisfying p
- $V = (V_1, ..., V_n)$

BDD-based Model Checking

- The algorithm works from simpler formulas to more complex ones
- When a formula g is handled, the BDD for S_g is built
- A formula is handled only after all its sub-formulas have been handled

BDD-based Model Checking

• For $p \in AP$, return f(p)

• For $f = f_1 \wedge f_2$, return $f_1 \wedge f_2 = f_1 \wedge f_2 = f_2 \wedge f_2 = f_1 \wedge f_2 = f_1 \wedge f_2 = f_2 \wedge f_2 = f_1 \wedge f_2 = f_2 \wedge f_2$

$$f_1 \wedge f_2$$

• For $f = \neg f_1$, return

BDD-based Model Checking

- For $p \in AP$, return p(V)
- For $f = f_1 \wedge f_2$, return $f(V) = f_1(V) \wedge f_2(V)$
- For $f = \neg f_1$, return $f(v) = \neg f_1(V)$

Example from SAT chapter

$$R(v_0, v_1, v_1') = (\neg v_0 \land \neg v_1) \land v_0' \land \neg v_1'$$

$$\bigvee_{\substack{V \supset V_0 \land v_1 \land v_0' \land \neg v_1' \\ \lor v_0 \land v_1 \land v_0' \land v_1'}} V_1' \land V_1' \land$$

$$a(v_0, v_1) = \neg v_0 \lor \neg v_1$$

For $f = EX f_1$ return

BDD-based Model Checking

• For
$$f = EX f_1$$
 return

$$f(V) = \exists V' [f_1(V') \land R(V,V')]$$

 This BDD represents all (encoding V of) states that have a successor (with encoding V') in f₁

• Defined as a new BDD operator: $EX f_1(V) = \exists V' [f_1(V') \land R(V,V')]$

This operation is also called pre-image or Pred

Important:

the formula defines a sequence of BDD operations and therefore is considered as a symbolic algorithm

BDD-based Model Checking for f= EF g

```
Given: BDDs R and S<sub>g</sub>:
procedure CheckEF (S<sub>g</sub>)
   Q := \mathcal{O}; Q' := S_{g};
While Q \neq Q' do
        Q':=(EXQ)VQ
    end while
    S_f := Q; return(S_f)
```

BDD-based Model Checking for f= EF g

```
Given: BDDs R and S<sub>g</sub>:
procedure CheckEF (S<sub>g</sub>)
    Q := emptyset; Q' := S_g;
    while \mathbf{Q} \neq \mathbf{Q'} do
       Q := Q';
       Q' := Q \vee EX(Q)
    end while
    S_f := Q; return(S_f)
```

The algorithm applies

- BDD operations (or ∨), and EX
- comparison $Q(V) \neq Q'(V)$ (easy)

Therefore, this is a symbolic algorithm!

Model Checking M |= f (cont.)

 We compute subformula g of f after all subformulas of g have been computed

• For subformula **g**, the algorithm returns the **set of states** that satisfy **g** (\mathbf{S}_{g})

Model Checking $f = E[g_1 \cup g_2]$

Given: a model M and the sets S_{g_1} and S_{g_2} of states satisfying g_1 and g_2 in M

```
procedure CheckEU (S_{g_1}, S_{g_2})
Q := \text{emptyset}; \ Q' := S_{g_2};
\text{while } Q \neq Q' \ \text{do}
Q := Q';
Q' := \text{end while}
S_f := Q; \ \text{return}(S_f)
```

Model Checking $f = E[g_1 \cup g_2]$

Given: a model M and the sets S_{g_1} and S_{g_2} of states satisfying g_1 and g_2 in M

```
procedure CheckEU (S_{g_1}, S_{g_2})

Q := emptyset; Q' := S_{g_2};

while Q \neq Q' do

Q := Q';

Q' := Q' \vee (S_{g_1} \wedge EX(Q'))

end while

S_f := Q; return(S_f)
```

Example: f = EG p

Note: $s \models EG p$ iff

•••

SEP AND SEEXEGP

EG p?

Model Checking f = EG g

CheckEG gets **M** and S_g and returns S_f

EF and EG are similar

CheckEG gets **M** and S_g and returns S_f

```
procedure CheckEG (S_g) procedure CheckEF (S_g)

Q := S; Q' := S_g;

while Q \neq Q' do

Q := Q';

Q' := Q \land EX(Q)

end while

S_f := Q; return(S_f)

procedure CheckEF (S_g)

Q := Q; Q' := S_g;

while Q \neq Q' do

Q := Q';

Q' := Q \lor EX(Q)

end while

S_f := Q; return(S_f)
```


Homework

Deadline: 24.6. 4:00pm

Sent solution to: modelchecking

Given the following synchronous c

The initial value of the state varial unknown.

Task 1a. [4 Points]

Show the BDD for the transition relation. Use the variable ordering v2', v2, v1, v1', v0, v0'

Task 1b. [4 Points]

• Draw the Kripke Structure $M = (S, S_0, R, AP, L)$ that represents C. (Hint: see Homework 1.) Show the iterations of the computation of the formula $EG \neg v_2$. (You can show the iterations graphically, or you can give a sequence of sets of states. You don't need to draw any BDDs.)

Task 1c. [2 Points]

• Show which states fulfil the formula $EF EG \neg v_2$.

Fairness in Symbolic Model Checking

Counterexamples and Witnesses

Relational Product Computations