Modeling Systems

Chapter 3

Model Checking

Modeling Systems

- 3.1 Transition Systems and Kripke Structures
- 3.2 Nondeterminism and Inputs
- 3.3 First-Order Logic and Symbolic Representations
- 3.4 Boolean Encoding
- 3.5 Modeling Digital Circuits
- 3.6 Modeling Programs
- 3.7 Fairness

Systems and Correctness

- We consider a broad range of systems
	- Hardware (digital circuitry)
	- Software
- We want to check that the system is correct
	- Meets high-level requirements
	- Captured in the form of system properties

Why Model?

Specification

States what you want to prove

System

Abstract away unnecessary details

- How does the OS scheduler work?
- How is the CPU pipeline implememnted?
- What are the voltage levels in the CPU?

But careful!

- Carelessly implemented CPUs introduce side channels
- Alpha particles may cause bits to flip
- Your formally verified system will fail when hit with a hammer

• …

What is a Model?

- A model is a description of the behavior of the system
- Behavior is
	- a set of observations
	- as the system evolves its state over time
- We check algorithmically that the model satisfies the properties
- To this end the model…
	- must have sufficient detail to prove the property
	- but should not be too complex

Transition Systems

- A transition system is a formal model
- Formal models enable formal proof

Kripke Structures

Inputs

- Inputs are fully under the control of the environment
- We can use nondeterminism to model inputs

- Input: "button pressed" or "button released", controlled by a hand, which is part of the environment
- Output: "light on" or "light off"

- Button is "retractive", it bounces back
- When the light is off, pushing the button turns the light on
- When the light is on, pushing the button turns the light off

Kripke Structure M = (S, S_0, R, AP, L)

- $S -$ (finite) set of states
- $S_0 \subseteq S$ set of initial states
- $R \subset S \times S$ left-total transition relation
	- For every $s \in S$ there exists $s' \in S$ such that $(s, s') \in R$
	- Left-total implies that every path is infinite
- AP finite set of atomic propositions
- L: $S \rightarrow 2^{AP}$ labeling function that associates every state with the atomic propositions true in that state

First-Order Logic and Symbolic Representations

Symbolic Representation

 $V = \{v_1, ..., v_n\}$ system variables D_{ν} domain of ν $s: V \to \bigcup_{v \in V} D_{v}$ valuation, state

Example

Symbolic Representation

Example

 $V = \{v_1, v_2, v_3\}, D_{v_i} = N$ State space: N^3 examples of state: $\{(v_1, 2), (v_2, 3), (v_3, 8)\}$ (short: (2,3,8))

Characteristic Functions

In general, a formula is a set of states.

Characteristic Functions

In general, a formula is a set of states.

$$
v_1 = 2 \land v_2 = 3 \land v_3 = 8
$$

\n
$$
v_1 = 2 \land v_2 = 3
$$

\n
$$
v_2 = 3 \land v_3 = v_1 + v_2
$$

\n
$$
v_1 = 2 \land v_2 = 3
$$

\n
$$
v_2 = 3 \land v_3 = v_1 + v_2
$$

\n
$$
v_1 = v_1 + v_2
$$

\n
$$
\{(n_1, 3, n_1 + 3) | n_1 \in \mathbb{N} \text{ and } n_2 \in \mathbb{N} \text{ and } n_3 \in \mathbb{N} \text{ and } n_4 \in \mathbb{N} \text{ and } n_5 \in \mathbb{N} \text{ and } n_6 \in \mathbb{N} \text{ and } n_7 \in \mathbb{N} \text{ and } n_8 \in \mathbb{N} \text{ and } n_9 \in \mathbb{N} \text{ and } n_1 \in \mathbb{N} \text{ and } n_1 \in \mathbb{N} \text{ and } n_1 \in \mathbb{N} \text{ and } n_2 \in \mathbb{N} \text{ and } n_3 \in \mathbb{N} \text{ and } n_4 \in \mathbb{N} \text{ and } n_5 \in \mathbb{N} \text{ and } n_6 \in \mathbb{N} \text{ and } n_7 \in \mathbb{N} \text{ and } n_8 \in \mathbb{N} \text{ and } n_9 \in \mathbb{N} \text{ and } n_1 \in \mathbb{N} \text{ and } n_1 \in \mathbb{N} \text{ and } n_2 \in \mathbb{N} \text{ and } n_3 \in \mathbb{N} \text{ and } n_4 \in \mathbb{N} \text{ and } n_5 \in \mathbb{N} \text{ and } n_6 \in \mathbb{N} \text{ and } n_7 \in \mathbb{N} \text{ and } n_9 \in \mathbb{N} \text{ and } n_1 \in \mathbb{N} \text{ and } n_2 \in \mathbb{N} \
$$

Sets and Formulas

Formula
\n
$$
\mathcal{A}, \mathcal{B}
$$

\n $A \cup B$
\n $A \cap B$
\n $S = D_{v_1} \times \cdots \times D_{v_n}$
\n $S \setminus A$

Example

 $v_1 = 2 \wedge v_2 = 3$ { $(2,3, n_3) | n_3 \in N$ }

 $v_2 = 3 \wedge v_3 = v_1 + v_2$ { $(n_1, 3, n_1 + 3) | n_1 \in N$ }

.

Sets and Formulas

Formula
\n
$$
A, B
$$

\n $A \vee B$
\n $A \vee B$
\n $A \wedge B$
\n $A \wedge B$
\n $A \wedge B$
\n $S = D_{\nu_1} \times \cdots \times D_{\nu_n}$
\n $\neg A \wedge B$
\n $S \setminus A$

Example

$$
v_1 = 2 \land v_2 = 3
$$

\n
$$
v_2 = 3 \land v_3 = v_1 + v_2
$$

\n
$$
v_1 = 2 \land v_2 = 3 \land v_2 = 3 \land v_3 = v_1 + v_2
$$

\n
$$
v_1 = 2 \land v_2 = 3 \lor v_2 = 3 \land v_3 = v_1 + v_2
$$

\n
$$
v_1 = 2 \land v_2 = 3 \lor v_2 = 3 \land v_3 = v_1 + v_2
$$

\n
$$
\{(2,3,n_3) | n_3 \in \mathbb{N} \} \cup \{(n_1,3,n_1+3) | n_1 \in \mathbb{N} \}
$$

Transition Systems

Example

System with variables x, y that range over $\{0,1\}$. Initially, $(x, y) = (1,1)$ and then $x := (x + y) \mod 2.$

Kripke structure

Initial states: $S_0(x, y) = x = 1 \land y = 1$ Transitions: $\mathcal{R}(x, y, x', y') = (x' = (x + y) \mod 2) \wedge (y' = y)$

Transition Systems

Example

System with variables x, y that range over $\{0,1\}$. Initially, $(x, y) = (1,1)$ and then $x := (x + y) \mod 2$.

Modeling Digital Circuits

- Inputs are fully under the control of the environment
- We can use nondeterminism to model inputs

3-bit Counter

$$
\mathcal{R}_0(V, V') = (v'_0 \leftrightarrow \neg v_0)
$$

\n
$$
\mathcal{R}_1(V, V') = (v'_1 \leftrightarrow v_0 \oplus v_1)
$$

\n
$$
\mathcal{R}_2(V, V') = (v'_2 \leftrightarrow v_2 \oplus (v_0 \land v_1))
$$

\n
$$
\mathcal{R}(V, V') = \mathcal{R}_0 \land \mathcal{R}_1 \land \mathcal{R}_2
$$

3-bit Counter

Inputs Inputs can be anything - model as nondeterministic

 $\mathcal{R}_0(V, V') =$.

$$
\mathcal{R}_1(V, V') = (v'_1 \leftrightarrow v_0 \oplus v_1) \mathcal{R}_2(V, V') = (v'_2 \leftrightarrow v_2 \oplus (v_0 \land v_1))
$$

Inputs

Inputs can be anything - model as nondeterministic

 $\mathcal{R}_0(V,V') = true$ no constraints on v_1 $\mathcal{R}_1(V, V') = (v'_1 \leftrightarrow v_0 \oplus v_1)$ $\mathcal{R}_2(V,V') = (v_2^{\overline{I}} \leftrightarrow v_2 \oplus (v_0 \wedge v_1))$

What does the Kripke structure look like?

Symbolic Representations

Hope: Sets (transition relation, all reachable states) will have small formulas

We know

- $\textcolor{red}{\textbf{+}}$ size of transition relation \cong size of circuit, software
- To represent a subset of $\{1, ..., 2^k\}$ we need 2^k bits in general

We will try to find algorithms that only produce small formulas

Asynchronous Systems

skipped

Modeling Software

Programs

Consist of

- consecution (;)
- if
- while
- x:=e, skip, wait
- labels $L:$

Assume every line has a label.

Example

P0:: l0: **while** true **do** NC0: **wait**(turn = 0); CR0: turn := 1 **end while**

```
P1::
l1: while true do
        NC1: wait(turn = 1);
        CR1: turn := 0end while
```
Define
$$
same(Y) = \Lambda_{y \in Y} y = Y'
$$

\nlabel of statement
\nDefine $C(l, S, l')$ label of next st

lent tatement

$$
\mathcal{C}(l, v \coloneqq e, l') =
$$

 $C(l, skip, l') =$

$$
\mathcal{C}(l,(P;l';P'),l'')=
$$

Define
$$
same(Y) = \Lambda_{y \in Y} y = Y'
$$

Define $C(l, s, l')$ label of statement statement label of next statement

$$
\mathcal{C}(l, v := e, l') = pc = l \land pc' = l \land v' = e \land same(V \setminus \{v\}),
$$

$$
\mathcal{C}(l, skip, l') = pc = l \land pc' = l \land same(V),
$$

$$
\mathcal{C}(l, (P; l'; P'), l'') = \mathcal{C}(l, P, l') \lor \mathcal{C}(l', P', l''),
$$

$$
\mathcal{C}(l, \text{if } b \text{ then } l_1: P1 \text{ else } l_2: P2 \text{ end if, } l') =
$$

(pc = l \land b \land pc' = l_1 \land same(V) \lor
(pc = l' \land \neg b \land pc' = l_2 \land same(V) \lor

$$
\mathcal{C}(l_1, P1, l') \lor\mathcal{C}(l_2, P2, l')
$$

$$
\mathcal{C}(l, \text{while } b \text{ do } l_1: P1 \text{ end while, } l') =
$$

(pc = l \land b \land pc' = l_1 \land same(V) \lor
(pc = l' \land \neg b \land pc' = l' \land same(V) \lor

$$
\mathcal{C}(l_1, P1, l)
$$

 $C(l,$ if b then l_1 : P1 else l_2 : P2 end if, l') =

$C(l,$ while b do l_1 : P1 end while, l') =

Concurrency

P:: cobegin

l1:P1 l1' || l2P2 l2'

coend

Three program counters:

- 1. pc for the program that invokes cobegin
- 2. pc_1 for Thread 1
- 3. $pc₂$ for Thread 2
- $pc = susp$ means that the program is not running.

$$
\mathcal{C}(l, \mathbf{P}, l') = (pc = l \land pc' = \text{sup } \land pc'_1 = l_1 \land pc'_2 = l_2 \land \text{same}(V)) \lor
$$

\n
$$
(pc = \text{sup } \land pc_1 = l'_1 \land pc_2 = l'_2 \land pc' = l' \land pc'_1 = \text{sup } \land pc'_2 = \text{sup } \land \text{same}(V)) \lor
$$

\n
$$
\bigvee_{i=1}^{n} (\mathcal{C}(l_i, P_i, l'_i) \land \text{same}(V \setminus V_i) \land \text{same}(PC \setminus \{pc_i\})
$$

Fairness

Fairness

• skipped

Model Checking Homework 1

Deadline: 18.3. 4:00pm Sent solution to: modelchecking@iaik.tugraz.at

Given the following synchronous circuit C .

