Modeling Systems

Chapter 3

Modeling Systems

- 3.1 Transition Systems and Kripke Structures
- 3.2 Nondeterminism and Inputs
- 3.3 First-Order Logic and Symbolic Representations
- 3.4 Boolean Encoding
- 3.5 Modeling Digital Circuits
- 3.6 Modeling Programs
- 3.7 Fairness

Systems and Correctness

- We consider a broad range of systems
 - Hardware (digital circuitry)
 - Software

- We want to check that the system is correct
 - Meets high-level requirements
 - Captured in the form of system properties

Why Model?

Specification

States what you want to prove

System

Abstract away unnecessary details

- How does the OS scheduler work?
- How is the CPU pipeline implememnted?
- What are the voltage levels in the CPU?

But careful!

- Carelessly implemented CPUs introduce side channels
- Alpha particles may cause bits to flip
- Your formally verified system will fail when hit with a hammer
- ...

What is a Model?

- A model is a description of the behavior of the system
- Behavior is
 - a set of observations
 - as the system evolves its state over time
- We check algorithmically that the model satisfies the properties
- To this end the model...
 - must have sufficient detail to prove the property
 - but should not be too complex

Transition Systems

- A transition system is a formal model
- Formal models enable formal proof

Kripke Structures

Inputs

- Inputs are fully under the control of the environment
- We can use nondeterminism to model inputs

- Input: "button pressed" or "button released", controlled by a hand, which is part of the environment
- Output: "light on" or "light off"

- Button is "retractive", it bounces back
- When the light is off, pushing the button turns the light on
- When the light is on, pushing the button turns the light off

light switch "released" = r

light bulb "off" = 0

model of the controller

"pressed" = p

light bulb
"on" = 1

model of the controller

light switch "released" = r

light bulb "on" = 1

model of the controller

light switch "pressed" = p

"off" = 0

model of the controller

model of the controller

Kripke Structure $M = (S, S_0, R, AP, L)$

- S (finite) set of states
- $S_0 \subseteq S$ set of initial states
- R ⊆ S×S left-total transition relation
 - For every $s \in S$ there exists $s' \in S$ such that $(s, s') \in R$
 - Left-total implies that every path is infinite
- AP finite set of atomic propositions
- L: S \rightarrow 2^{AP} labeling function that associates every state with the atomic propositions true in that state

First-Order Logic and Symbolic Representations

Symbolic Representation

$$V = \{v_1, \dots, v_n\}$$
 system variables D_v domain of v $s: V \to \bigcup_{v \in V} D_v$ valuation, state

Example

Symbolic Representation

$$V = \{v_1, \dots, v_n\}$$
 system variables D_v domain of v $s: V \to \bigcup_{v \in V} D_v$ valuation, state

Example

$$V = \{v_1, v_2, v_3\}, D_{v_i} = N$$

State space: **N**³

examples of state: $\{(v_1, 2), (v_2, 3), (v_3, 8)\}$ (short: (2,3,8))

Characteristic Functions

In general, a formula is a set of states.

Characteristic Functions

In general, a formula is a set of states.

$$v_1 = 2 \land v_2 = 3 \land v_3 = 8$$
 (2,3,8)
 $v_1 = 2 \land v_2 = 3$ $\{(2,3,n_3) \mid n_3 \in N\}$
 $v_2 = 3 \land v_3 = v_1 + v_2$ $\{(n_1,3,n_1+3) \mid n_1 \in N\}$
 $true$ N^3

Sets and Formulas

Formula

 \mathcal{A},\mathcal{B}

A, B

Set

 $A \cup B$

 $A \cap B$

 $S = D_{v_1} \times \cdots \times D_{v_n}$

 $S \setminus A$

Example

$$v_1 = 2 \land v_2 = 3$$

 $v_2 = 3 \land v_3 = v_1 + v_2$

$$\{ (2,3,n_3) \mid n_3 \in \mathbb{N} \}$$

 $\{ (n_1,3,n_1+3) \mid n_1 \in \mathbb{N} \}$

•

Sets and Formulas

```
Formula Set \mathcal{A},\mathcal{B} \qquad A,B \mathcal{A}\vee\mathcal{B} \qquad A\cup B \mathcal{A}\wedge\mathcal{B} \qquad A\cap B \mathsf{true} \qquad \mathsf{S}=D_{v_1}\times\cdots\times D_{v_n} \neg\mathcal{A}\wedge\mathcal{B} \qquad \mathsf{S}\setminus A
```

Example

$$\begin{array}{lll} v_1 = 2 \wedge v_2 = 3 & & \{ (2,3,n_3) \mid n_3 \in \mathbf{N} \} \\ v_2 = 3 \wedge v_3 = v_1 + v_2 & \{ (n_1,3,n_1+3) \mid n_1 \in \mathbf{N} \} \\ v_1 = 2 \wedge v_2 = 3 \wedge v_2 = 3 \wedge v_3 = v_1 + v_2 & \{ (2,3,n_3) \mid n_3 \in \mathbf{N} \} \cup \{ (n_1,3,n_1+3) \mid n_1 \in \mathbf{N} \} \\ v_1 = 2 \wedge v_2 = 3 \vee v_2 = 3 \wedge v_3 = v_1 + v_2 & \{ (2,3,n_3) \mid n_3 \in \mathbf{N} \} \cup \{ (n_1,3,n_1+3) \mid n_1 \in \mathbf{N} \} \end{array}$$

Transition Systems

Example

System with variables x, y that range over $\{0,1\}$.

Initially, (x, y) = (1,1) and then

$$x := (x + y) \mod 2$$
.

Kripke structure

Initial states: $S_0(x, y) = x = 1 \land y = 1$

Transitions: $\mathcal{R}(x, y, x', y') = (x' = (x + y) \mod 2) \land (y' = y)$

Transition Systems

Example

System with variables x, y that range over $\{0,1\}$. Initially, (x,y) = (1,1) and then $x := (x + y) \mod 2$.

Modeling Digital Circuits

- Inputs are fully under the control of the environment
- We can use nondeterminism to model inputs

3-bit Counter

$$\begin{aligned} \mathcal{R}_0(V,V') &= (v_0' \leftrightarrow \neg v_0) \\ \mathcal{R}_1(V,V') &= (v_1' \leftrightarrow v_0 \oplus v_1) \\ \mathcal{R}_2(V,V') &= \left(v_2' \leftrightarrow v_2 \oplus (v_0 \land v_1)\right) \\ \mathcal{R}(V,V') &= \mathcal{R}_0 \land \mathcal{R}_1 \land \mathcal{R}_2 \end{aligned}$$

3-bit Counter

28

Inputs can be anything - model as nondeterministic

$$\begin{split} \mathcal{R}_0(V,V') &= . \\ \mathcal{R}_1(V,V') &= (v_1' \leftrightarrow v_0 \oplus v_1) \, \mathcal{R}_2(V,V') &= \\ \left(v_2' \leftrightarrow v_2 \oplus (v_0 \wedge v_1)\right) \end{split}$$

Inputs

Inputs can be anything - model as nondeterministic

$$\mathcal{R}_0(V,V') = true$$
 no constraints on v_1

$$\mathcal{R}_1(V, V') = (v'_1 \leftrightarrow v_0 \oplus v_1)$$

$$\mathcal{R}_2(V, V') = (v'_2 \leftrightarrow v_2 \oplus (v_0 \land v_1))$$

What does the Kripke structure look like?

Symbolic Representations

Hope: Sets (transition relation, all reachable states) will have small formulas

We know

- + size of transition relation ≅ size of circuit, software
- To represent a subset of $\{1, ..., 2^k\}$ we need 2^k bits in general

We will try to find algorithms that only produce small formulas

Asynchronous Systems

skipped

Modeling Software

Programs

Consist of

- consecution (;)
- if
- while
- x:=e, skip, wait
- labels ⊥:

Assume every line has a label.

```
Example
P0::
10: while true do
        NC0: wait(turn = 0);
        CR0: turn := 1
end while
P1::
11: while true do
        NC1: wait(turn = 1);
        CR1: turn := 0
```

end while

Define
$$same(Y) = \bigwedge_{y \in Y} y = Y'$$

Define
$$C(l, s, l')$$

label of statement statement label of next statement

$$C(l, v \coloneqq e, l') =$$

$$C(l, skip, l') =$$

$$\mathcal{C}(l,(P;l':P'),l'') =$$

Define
$$same(Y) = \bigwedge_{y \in Y} y = Y'$$

Define
$$C(l, s, l')$$

label of statement statement label of next statement

$$C(l, v \coloneqq e, l') = pc = l \land pc' = 'l \land v' = e \land same(V \setminus \{v\}),$$

$$C(l, skip, l') = pc = l \land pc' = 'l \land same(V),$$

$$C(l, (P; l': P'), l'') = C(l, P, l') \lor C(l', P', l''),$$

```
\mathcal{C}(l, \text{if b then } l_1: P1 \text{ else } l_2: P2 \text{ end if, } l') = (pc = l \land b \land pc' = l_1 \land same(V) \lor (pc = l' \land \neg b \land pc' = l_2 \land same(V) \lor \mathcal{C}(l_1, P1, l') \lor \mathcal{C}(l_2, P2, l')
```

```
\mathcal{C}(l, \mathbf{while} \ \mathbf{b} \ \mathbf{do} \ l_1: P1 \ \mathbf{end} \ \mathbf{while}, l') = (pc = l \land b \land pc' = l_1 \land same(V) \lor (pc = l' \land \neg b \land pc' = l' \land same(V) \lor \mathcal{C}(l_1, P1, l)
```

 $C(l, if b then l_1: P1 else l_2: P2 end if, l') =$

 $C(l, while b do l_1: P1 end while, l') =$

Concurrency

P:: cobegin

```
11:P1 11' ||
12P2 12'
```

coend

Three program counters:

- 1. pc for the program that invokes cobegin
- 2. pc_1 for Thread 1
- 3. pc_2 for Thread 2

pc = susp means that the program is not running.

$$\mathcal{C}(l, \mathbf{P}, l') = (pc = l \land pc' = susp \land pc'_1 = l_1 \land pc'_2 = l_2 \land same(V)) \lor$$

$$(pc = susp \land pc_1 = l'_1 \land pc_2 = l'_2 \land pc' = l' \land pc'_1 = susp \land pc'_2 = susp \land same(V)) \lor$$

$$\bigvee_{i=1}^{n} (\mathcal{C}(l_i, P_i, l'_i) \land same(V \backslash V_i) \land same(PC \backslash \{pc_i\})$$

Example

P0::

10: while true do

NC0: **wait**(turn = 0);

CR0: turn := 1

end while

P1::

l1: while true do

NC1: **wait**(turn = 1);

CR1: turn := 0

end while

Fairness

Fairness

skipped

Model Checking Homework 1

Deadline: 18.3. 4:00pm

Sent solution to: modelchecking@iaik.tugraz.at

Given the following synchronous circuit C.

