
Model CheckingModel Checking

Modeling Systems
Chapter 3

Model CheckingModel Checking

Modeling Systems

3.1 Transition Systems and Kripke Structures

3.2 Nondeterminism and Inputs

3.3 First-Order Logic and Symbolic Representations

3.4 Boolean Encoding

3.5 Modeling Digital Circuits

3.6 Modeling Programs

3.7 Fairness

Chapter 3 2

Model CheckingModel Checking

Systems and Correctness

• We consider a broad range of systems
• Hardware (digital circuitry)

• Software

• We want to check that the system is correct
• Meets high-level requirements

• Captured in the form of system properties

Chapter 3 3

Model CheckingModel Checking

Why Model?

Specification

States what you want to prove

System

Abstract away unnecessary details

• How does the OS scheduler work?

• How is the CPU pipeline implememnted?

• What are the voltage levels in the CPU?

But careful!

• Carelessly implemented CPUs introduce side
channels

• Alpha particles may cause bits to flip

• Your formally verified system will fail when hit
with a hammer

• …

Chapter 3 4

Model CheckingModel Checking

What is a Model?

• A model is a description of the behavior of the system

• Behavior is
• a set of observations

• as the system evolves its state over time

• We check algorithmically that the model satisfies the properties

• To this end the model…
• must have sufficient detail to prove the property

• but should not be too complex

Chapter 3 5

Model CheckingModel Checking

Transition Systems

• A transition system is a formal model

• Formal models enable formal proof

Chapter 3 6

Model CheckingModel Checking

Kripke Structures

Chapter 3 8

Model CheckingModel Checking

Inputs

• Inputs are fully under the control of the environment

• We can use nondeterminism to model inputs

Chapter 3 9

Model CheckingModel Checking

Inputs: Light Switch Example

• Input: “button pressed” or “button released”,
controlled by a hand, which is part of the environment

• Output: “light on” or “light off”

Chapter 3 10

• Button is “retractive”, it bounces back

• When the light is off, pushing the button
turns the light on

• When the light is on, pushing the button
turns the light off

Model CheckingModel Checking

Inputs : Light Switch Example

Chapter 3 11

0, r 1, p

1, r0, p

light switch light bulb model of the controller

“released” = r “off” = 0“released” = r

Model CheckingModel Checking

Inputs : Light Switch Example

Chapter 3 12

0, r 1, p

1, r0, p

light switch light bulb model of the controller

“pressed” = p “on” = 1

Model CheckingModel Checking

Inputs : Light Switch Example

Chapter 3 13

0, r 1, p

1, r0, p

light switch light bulb model of the controller

“on” = 1“released” = r

Model CheckingModel Checking

Inputs : Light Switch Example

Chapter 3 14

0, r 1, p

1, r0, p

light switch light bulb model of the controller

“pressed” = p “off” = 0

Model CheckingModel Checking

Inputs : Light Switch Example

Chapter 3 15

0, r 1, p

1, r0, p

light switch light bulb model of the controller

“off” = 0“released” = r

Model CheckingModel Checking

Kripke Structure M = (S, S0, R, AP, L)

• S – (finite) set of states

• S0 S – set of initial states

• R S⨯S – left-total transition relation
• For every s S there exists s’ S such that (s, s’) R

• Left-total implies that every path is infinite

• AP – finite set of atomic propositions

• L : S → 2AP – labeling function that associates every state
with the atomic propositions true in that state

Chapter 3 16

Model CheckingModel Checking

First-Order Logic and
Symbolic Representations

Chapter 3 17

Model CheckingModel Checking

Symbolic Representation

𝑉 = {𝑣1, … , 𝑣𝑛} system variables

𝐷𝑣 domain of 𝑣

𝑠: 𝑉 → 𝑣∈𝑉𝐷_𝑣ڂ valuation, state

Example

Chapter 3 18

Model CheckingModel Checking

Symbolic Representation

𝑉 = {𝑣1, … , 𝑣𝑛} system variables

𝐷𝑣 domain of 𝑣

𝑠: 𝑉 → 𝑣∈𝑉𝐷_𝑣ڂ valuation, state

Example

𝑉 = {𝑣1, 𝑣2, 𝑣3}, 𝐷𝑣𝑖 = 𝑵

State space: 𝑵3

examples of state: { 𝑣1, 2 , 𝑣2, 3 , (𝑣3, 8)} (short: (2,3,8))

Chapter 3 19

Model CheckingModel Checking

Characteristic Functions

In general, a formula is a set of states.

Chapter 3 20

Model CheckingModel Checking

Characteristic Functions

In general, a formula is a set of states.

𝑣1 = 2 ∧ 𝑣2 = 3 ∧ 𝑣3 = 8 (2,3,8)

𝑣1 = 2 ∧ 𝑣2 = 3 2,3, 𝑛3 𝑛3 ∈ 𝑵

𝑣2 = 3 ∧ 𝑣3 = 𝑣1 + 𝑣2 𝑛1, 3, 𝑛1 + 3 𝑛1 ∈ 𝑵

𝑡𝑟𝑢𝑒 𝑵3

Chapter 3 21

Model CheckingModel Checking

Sets and Formulas

Formula Set

𝒜,ℬ 𝐴, 𝐵

𝐴 ∪ 𝐵

𝐴 ∩ 𝐵

S = 𝐷𝑣1 ×⋯× 𝐷𝑣𝑛
S ∖ 𝐴

Example

𝑣1 = 2 ∧ 𝑣2 = 3 2,3, 𝑛3 𝑛3 ∈ 𝑵

𝑣2 = 3 ∧ 𝑣3 = 𝑣1 + 𝑣2 𝑛1, 3, 𝑛1 + 3 𝑛1 ∈ 𝑵

.

Chapter 3 22

Model CheckingModel Checking

Sets and Formulas

Formula Set

𝒜,ℬ 𝐴, 𝐵

𝒜 ∨ ℬ 𝐴 ∪ 𝐵

𝒜 ∧ ℬ 𝐴 ∩ 𝐵

𝑡𝑟𝑢𝑒 S = 𝐷𝑣1 ×⋯× 𝐷𝑣𝑛
¬𝒜 ∧ ℬ S ∖ 𝐴

Example

𝑣1 = 2 ∧ 𝑣2 = 3 2,3, 𝑛3 𝑛3 ∈ 𝑵

𝑣2 = 3 ∧ 𝑣3 = 𝑣1 + 𝑣2 𝑛1, 3, 𝑛1 + 3 𝑛1 ∈ 𝑵

𝑣1 = 2 ∧ 𝑣2 = 3 ∧ 𝑣2 = 3 ∧ 𝑣3 = 𝑣1 + 𝑣2 (2,3,5)

𝑣1 = 2 ∧ 𝑣2 = 3 ∨ 𝑣2 = 3 ∧ 𝑣3 = 𝑣1 + 𝑣2 2,3, 𝑛3 𝑛3 ∈ 𝑵 ∪ 𝑛1, 3, 𝑛1 + 3 𝑛1 ∈ 𝑵

Chapter 3 23

Model CheckingModel Checking

Transition Systems

Example

System with variables 𝑥, 𝑦 that range over {0,1}.

Initially, 𝑥, 𝑦 = (1,1) and then

𝑥 ≔ 𝑥 + 𝑦 𝑚𝑜𝑑 2.

Initial states: 𝒮0 𝑥, 𝑦 = 𝑥 = 1 ∧ 𝑦 = 1

Transitions: ℛ 𝑥, 𝑦, 𝑥′, 𝑦′ = (𝑥′ = 𝑥 + 𝑦 𝑚𝑜𝑑 2) ∧ (𝑦′ = 𝑦)

Chapter 3 24

Kripke structure

0,0 0,1

1,0 1,1

Model CheckingModel Checking

Transition Systems

Example

System with variables 𝑥, 𝑦 that range over {0,1}.

Initially, 𝑥, 𝑦 = (1,1) and then

𝑥 ≔ 𝑥 + 𝑦 𝑚𝑜𝑑 2.

Chapter 3 25

Model CheckingModel Checking

Modeling Digital Circuits

• Inputs are fully under the control of the environment

• We can use nondeterminism to model inputs

Chapter 3 26

Model CheckingModel Checking

v0

v1

v2

3-bit Counter

ℛ0 𝑉, 𝑉′ = (𝑣0
′ ↔ ¬𝑣0)

ℛ1 𝑉, 𝑉′ = (𝑣1
′ ↔ 𝑣0 ⊕𝑣1)

ℛ2 𝑉, 𝑉′ = 𝑣2
′ ↔ 𝑣2 ⊕ 𝑣0 ∧ 𝑣1

ℛ 𝑉, 𝑉′ = ℛ0 ∧ ℛ1 ∧ ℛ2

Chapter 3 27

Model CheckingModel Checking

v0

v1

v2

3-bit Counter

Chapter 3 28

Model CheckingModel Checking

Inputs
Inputs can be anything - model as
nondeterministic

ℛ0 𝑉, 𝑉′ =.

ℛ1 𝑉, 𝑉′ = (𝑣1
′ ↔ 𝑣0 ⊕𝑣1) ℛ2 𝑉, 𝑉′ =

𝑣2
′ ↔ 𝑣2 ⊕ 𝑣0 ∧ 𝑣1

Chapter 3 29

v0

v1

v2

Model CheckingModel Checking

Inputs

Inputs can be anything - model as
nondeterministic

ℛ0 𝑉, 𝑉′ = 𝑡𝑟𝑢𝑒 no constraints on 𝑣1

ℛ1 𝑉, 𝑉′ = (𝑣1
′ ↔ 𝑣0 ⊕𝑣1)

ℛ2 𝑉, 𝑉′ = 𝑣2
′ ↔ 𝑣2 ⊕ 𝑣0 ∧ 𝑣1

What does the Kripke structure look
like?

Chapter 3 30

v0

v1

v2

Model CheckingModel Checking

Symbolic Representations

Hope: Sets (transition relation, all reachable states) will have small
formulas

We know

+ size of transition relation size of circuit, software

- To represent a subset of 1,… , 2𝑘 we need 2𝑘bits in general

We will try to find algorithms that only produce small formulas

Chapter 3 31

Model CheckingModel Checking

Asynchronous Systems

skipped

Chapter 3 32

Model CheckingModel Checking

Modeling Software

Programs

Consist of

• consecution (;)

• if

• while

• x:=e, skip, wait

• labels L:

Assume every line has a label.

Example

P0::

l0: while true do

NC0: wait(turn = 0);

CR0: turn := 1

end while

P1::

l1: while true do

NC1: wait(turn = 1);

CR1: turn := 0

end while

Chapter 3 33

Model CheckingModel Checking

Translation

Define 𝑠𝑎𝑚𝑒 𝑌 = 𝑦∈𝑌ٿ 𝑦 = 𝑌′

Define 𝒞 𝑙, 𝑠, 𝑙′

.𝒞 𝑙, 𝑣 ≔ 𝑒, 𝑙′ =

.𝒞 𝑙, 𝑠𝑘𝑖𝑝, 𝑙′ =

.𝒞 𝑙, (𝑃; 𝑙′: 𝑃′), 𝑙′′ =

Chapter 3 34

label of statement
statement
label of next statement

Model CheckingModel Checking

Translation

Define 𝑠𝑎𝑚𝑒 𝑌 = 𝑦∈𝑌ٿ 𝑦 = 𝑌′

Define 𝒞 𝑙, 𝑠, 𝑙′

𝒞 𝑙, 𝑣 ≔ 𝑒, 𝑙′ = 𝑝𝑐 = 𝑙 ∧ 𝑝𝑐′ =′ 𝑙 ∧ 𝑣′ = 𝑒 ∧ 𝑠𝑎𝑚𝑒(𝑉 ∖ {𝑣}) ,

𝒞 𝑙, 𝑠𝑘𝑖𝑝, 𝑙′ = 𝑝𝑐 = 𝑙 ∧ 𝑝𝑐′ =′ 𝑙 ∧ 𝑠𝑎𝑚𝑒(𝑉) ,

𝒞 𝑙, (𝑃; 𝑙′: 𝑃′), 𝑙′′ = 𝒞 𝑙, 𝑃, 𝑙′ ∨ 𝒞 𝑙′, 𝑃′, 𝑙′′ ,

Chapter 3 35

label of statement
statement
label of next statement

Model CheckingModel Checking

Translation

𝒞 𝑙, 𝐢𝐟 b 𝐭𝐡𝐞𝐧 l1: P1 𝐞𝐥𝐬𝐞 l2: P2 𝐞𝐧𝐝 if, 𝑙′ =
(𝑝𝑐 = 𝑙 ∧ 𝑏 ∧ 𝑝𝑐′ = 𝑙1 ∧ 𝑠𝑎𝑚𝑒 𝑉 ∨
(𝑝𝑐 = 𝑙′ ∧ ¬𝑏 ∧ 𝑝𝑐′ = 𝑙2 ∧ 𝑠𝑎𝑚𝑒 𝑉 ∨
𝒞 𝑙1, 𝑃1, 𝑙′ ∨
𝒞 𝑙2, 𝑃2, 𝑙′

𝒞 𝑙, 𝐰𝐡𝐢𝐥𝐞 b 𝐝𝐨 l1: P1 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞, 𝑙′ =
(𝑝𝑐 = 𝑙 ∧ 𝑏 ∧ 𝑝𝑐′ = 𝑙1 ∧ 𝑠𝑎𝑚𝑒 𝑉 ∨
(𝑝𝑐 = 𝑙′ ∧ ¬𝑏 ∧ 𝑝𝑐′ = 𝑙′ ∧ 𝑠𝑎𝑚𝑒 𝑉 ∨
𝒞 𝑙1, 𝑃1, 𝑙

Chapter 3 36

Model CheckingModel Checking

Translation

𝒞 𝑙, 𝐢𝐟 b 𝐭𝐡𝐞𝐧 l1: P1 𝐞𝐥𝐬𝐞 l2: P2 𝐞𝐧𝐝 if, 𝑙′ =
(𝑝𝑐 = 𝑙 ∧ 𝑏 ∧ 𝑝𝑐′ = 𝑙1 ∧ 𝑠𝑎𝑚𝑒 𝑉 ∨
(𝑝𝑐 = 𝑙′ ∧ ¬𝑏 ∧ 𝑝𝑐′ = 𝑙2 ∧ 𝑠𝑎𝑚𝑒 𝑉 ∨
𝒞 𝑙1, 𝑃1, 𝑙′ ∨
𝒞 𝑙2, 𝑃2, 𝑙′

𝒞 𝑙, 𝐰𝐡𝐢𝐥𝐞 b 𝐝𝐨 l1: P1 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞, 𝑙′ =
(𝑝𝑐 = 𝑙 ∧ 𝑏 ∧ 𝑝𝑐′ = 𝑙1 ∧ 𝑠𝑎𝑚𝑒 𝑉 ∨
(𝑝𝑐 = 𝑙′ ∧ ¬𝑏 ∧ 𝑝𝑐′ = 𝑙′ ∧ 𝑠𝑎𝑚𝑒 𝑉 ∨
𝒞 𝑙1, 𝑃1, 𝑙

Chapter 3 37

Model CheckingModel Checking

Concurrency

P:: cobegin

l1:P1 l1’ ||

l2P2 l2’

coend

Three program counters:

1. 𝑝𝑐 for the program that invokes cobegin

2. 𝑝𝑐1 for Thread 1

3. 𝑝𝑐2 for Thread 2

𝑝𝑐 = 𝑠𝑢𝑠𝑝 means that the program is not running.

𝒞 𝑙, 𝐏, 𝑙′ = 𝑝𝑐 = 𝑙 ∧ 𝑝𝑐′ = 𝑠𝑢𝑠𝑝 ∧ 𝑝𝑐1
′ = 𝑙1 ∧ 𝑝𝑐2

′ = 𝑙2 ∧ 𝑠𝑎𝑚𝑒(𝑉) ∨

𝑝𝑐 = 𝑠𝑢𝑠𝑝 ∧ 𝑝𝑐1 = 𝑙′1 ∧ 𝑝𝑐2 = 𝑙′2 ∧ 𝑝𝑐
′ = 𝑙′ ∧ 𝑝𝑐′1 = 𝑠𝑢𝑠𝑝 ∧ 𝑝𝑐′2 = 𝑠𝑢𝑠𝑝 ∧ 𝑠𝑎𝑚𝑒(𝑉) ∨

𝑖=1ڀ
𝑛 (𝐶 𝑙𝑖 , 𝑃𝑖 , 𝑙𝑖

′ ∧ 𝑠𝑎𝑚𝑒 𝑉\V𝑖 ∧ 𝑠𝑎𝑚𝑒(𝑃𝐶 ∖ 𝑝𝑐𝑖)

Chapter 3 38

Model CheckingModel CheckingChapter 3 39

Example

P0::

l0: while true do

NC0: wait(turn = 0);

CR0: turn := 1

end while

P1::

l1: while true do

NC1: wait(turn = 1);

CR1: turn := 0

end while

Model CheckingModel Checking

Fairness

Chapter 3 40

Model CheckingModel Checking

Fairness

• skipped

Chapter 3 41

Model CheckingModel CheckingChapter 3 42

