Hardware-assisted Virtualization on non-Intel Processors

Alexander Deibel, Florian Kargl, Stefan Weiglhofer, Hannes Weissteiner
May 10, 2021

Overview of virtualization techniques on various architectures
e AMD

e ARM

e RISC-V

AMD

AMD Virtualization (AMD-V)

Released in 2006 for Athlon 64 series

Basic functionality supported by all Zen-based

AMD processors M D ‘
Some extensions (e.g. AMD-SEV) only for ‘ ‘ ‘

higher-end /server models

Similar concepts to Intel VT-x

AMD-V Architecture

Ring 3 User Apps

e Adds new privilege mode exclusively for
hypervisor use Ring 2
Guest
mode

e VMM in "ring -1" Ring 1

e Two operation modes:
Ring 0 Guest OS

ik

e Host mode

(similar to VMX Root Operation)

Guest mod Host VMM
e Guest mode mode

(similar to VMX Non-Root Operation)

AMD-V Instructions

Setting EFER.SVME to 1 enables the following instructions (similar to VIMXON

instruction on Intel):

e VMRUN - to enter guest mode
e VMLOAD/VMSAVE - saves/restores additional guest state information
CLGI/STGI - sets/clears the global interrupt flag (GIF)

INVLPGA - allows to selectively invalidate TLB mappings using a given ID (ASID)
e VMMCALL - a way for a guest to explicitly call the VMM

SKINIT - used to verify and load trusted software (e.g. a VMM)

Virtual Machine Control Block (VMCB)

Data structure (similar to VMCS on Intel)

[]

e Contains:
e Control bits to define the guest exit behaviour
e Control bits that specify the execution environment (e.g. nested paging)
e A guest processor state (e.g. control registers, ...)

e VMRUN/VMEXIT

only saves/restores minimal amount of state information
e VMLOAD/VMSAVE

used to load/store additional state information (e.g. hidden processor states, ...)

Entering VMM mode

e Enter guest mode with VMRUN instruction
(comparable to VMLAUNCH/VMRESUME)

e Guest runs until a #VMEXIT occurs

Host instruction Stream

\ VMRUN [rAX]

VMCB

Data Structure

Guest instruction Stream

—_—

Exiting VMM mode (#VMEXIT)

e Guest runs until intercepts happens:

e Exception or Interrupt
e Instruction (e.g. VMMCALL)

e Information about the exit reason is put into the VMCB

e Advanced Virtual Interrupt Controller (AVIC)

e Reduction of interrupt overhead for virtualization

AMD-V Further Features

e Second Level Address Translation
Nested Page tables (NPT)/Rapid Virtualization Indexing (RVI) (EPT on Intel):

e Enable by setting NP_ENABLE bit in the VMCB to 1
e Set NPT base pointer via N_CR3 in the VMCB

e TLB Control

TLB entries are tagged with Address Space Identifier (ASID) to differentiate
between guest physical address spaces

e 1/0-Virtualization
AMD-Vi: enables virtualization of |/O-devices through the use of DMA and
interrupt remapping

AMD-V Security Extensions

e Secure Encrypted Virtualization (SEV)
Guards against guest memory inspection by
assigning a unique AES encryption key to
automatically encrypt their in-use data

e SEV Encrypted State (SEV-ES)
Guest register state is encrypted on each
hypervisor transition

Memory Encryption Engine (AES-128)
G &)

e SEV Secure Nested Paging (SEV-SNP)
Adds memory integrity protection

10

ARM

Not too long ago in a galaxy not all that far away...

ARMVvV7-A without extensions

(N2005—20]. 1) Supervisor Entered on reset and when a Supervisor call
. » (sve) instruction (SVC) is executed
[J LOtS Of d |ﬂ:e rent processor § FiQ Entered when a high priority (fast) interrupt is
£ raised
modes 5 — ..
E IRQ Entered when a normal priority interrupt is raised Privileged
. o . d
C leferent rengterS aval la ble |Lu< Abort Used to handle memory access violations modes
° DIﬂ:erent StaCk space Undef Used to handle undefined instructions
L4 Determ Ines prIVI lege |eVe| System Privileged mode using the same registers as User
mode
e Some Operations on Iy User Mode under which most Applications / OS tasks privileged
run ode
available in privileged modes
e No virtualization support Figure 1: ARMvT7-A processor modes

11

ARM virtualization challenges

Popek and Goldberg virtualization requirements
e Equivalence
Guest software behaves identical to native execution

e Resource control
Guest software is not allowed to access physical state and resources

o Efficiency
All non-sensitive instructions are executed natively without VMM intervention

12

ARM virtualization challenges

e Sensitive instructions

Instructions that change/read system Popek and Goldberg theorem

state, access physical resources, ... If the set of sensitive instructions is a
.. . . subset of privileged instructions, a system
e Privileged instructions p) g . . Y
. . . can be efficiently virtualized.
Privileged instructions are always i o
. . = Trap-and-emulate virtualization
trapped into a privileged mode when

executed in an unprivileged mode.

13

ARM virtualization challenges

Problems with ARMv7-A:

e Not all sensitive instructions are privileged and cause a trap, e.g.

e Interaction with coprocessors (modify system state)
e Wait for interrupt

e Return from event handlers (change processor mode)

= ARMVT7-A can not be virtualized via trap-and-emulate!

14

ARM virtualization challenges

But: Not all is lost, virtualization still possible via dynamic binary translation

e VMM interprets guest code at runtime and emulates sensitive instructions

e Unfortunately quite slow...

Full system virtualization not used very often for ARMv7-A
= Paravirtualization to the rescue

15

Solving the ARM virtualization problem

Virtualization Extensions introduced for the ARMv7-A architecture in 2011 to solve

these problems.

New Hyp mode with higher privilege level 2

Allow sensitive instructions to be trapped into the hypervisor mode

Two stage address translation for VMs (similar to Intel EPT)

IRQs and exceptions can be routed to the hypervisor + virtual IRQ injection
HVC hypervisor call instruction (for paravirtualization)

Virtualization support for standard peripherals (interrupt controller, timer)

No dedicated VM control block in memory. State needs to be saved/restored by
the hypervisor.

16

ARMVv7-A Virtualization Extensions

Exception modes

Mode

Supervisor Entered on reset and when a Supervisor call

(sve) instruction (SVC) is executed

FlQ Entered when a high priority (fast) interrupt is
raised

IRQ Entered when a normal priority interrupt is raised

Abort Used to handle memory access violations

Undef Used to handle undefined instructions

System Privileged mode using the same registers as User
mode

ey Mode under which most Applications / OS tasks

run

Figure 2: ARMv7-A modes

Privileged
modes

Unprivileged
mode

Same
register bank

Exception modes

Mode

Supervisor | Entered on reset and when a Supervisor call instruction

(svo) (SVC) is executed

FlQ Entered when a high priority (fast) interrupt is raised

IRQ Entered when a normal priority interrupt is raised

Abort Used to handle memory access violations Prieney
modes

Undef Used to handle undefined instructions

Hyp Used for hardware virtualization support

Monitor Used for TrustZone secure monitor program

System Privileged mode using the same registers as User mode

User Mode under which most Applications / OS tasks run :r:;:vnleged

Figure 3: ARMv7-A modes with virtualization
extension

17

ARMvV7-A Virtualization Extensions - Privilege Levels

e PLO: User applications

No Hyp in Secure
world

Hyp Hypervisor

Non-Secure Secure
3
, U n_/ priVi Ieged ' rena med to User App App App App i Trusted Services
1
. :
privilege level (PL) SVC, Abort, os - 1 gr—
IRQ, etc... i
i
'
1
!

e PL1: (Guest) kernel
e PL2: Hypervisor

Mon Secure Monitor

Figure 4: ARMv7-A virtualization extension privilege levels

18

Armv8-A overview

e Exception Levels

e Execution states _éE

e Memory Management

Figure 5: Arm

Armv8-A overview

Non-secure Secure

6 -
AArch32 App Trusted Services

AArch32
EL1 AArché64 Kernel

EL2 Hypervisor

AArch32 Kernel Trusted OS

Trusted Partition
Manager*

EL3 Firmware / Secure Monitor

* Secure EL2 from Armv8.4-A
20

Armv8-A Virtual Memory

NS.EL1

NS.ELO

NS.EL2

EL3

Guest 05
Vitual memory map

0s

Stage 1

| e |
Guest O5

Application

li

Hypervisor
Vitual memory map

Hypervisor

Secure Monitor
Vitual memory map

Secure Monitor

LJ

Tables

TTBRn_EL1

Hypervisor

—

Physical memory map
seen by guest 05

Peripherals

RAM

:

Flash

Stage 2

Virtualization

Tables

VITBRO_EL2

Tables

TTER0_EL2

|
Secure Monitor

Tables

TTBRO_EL3

Peripherals
RAM

Peripherals

Flash

21

ARMVvS8-A - Virtual Memory

ELO/EL1 virtual address space is split in two parts

e Low virtual addresses (userspace)
e Size configurable via TCR_EL1.T0SZ
e Page table base TTBRO_EL1

e High virtual addresses (kernel)

e Size configurable via TCR_EL1.T1SZ
e Page table base TTBR1_EL1

Virtual Address Space
OXFFFF_FFFF_FFFF_FFFF
Kernel space [
0XFFFO_0000_0000_0000 TCR_EL1.T1SZ
0x000F_FFFF_FFFF_FFFF TCR_EL1.T0SZ
User space
0x0000_0000_0000_0000

22

ARMVvS8-A - Virtual Memory

ELO/ELL1 virtual address space is split in two parts

e Low virtual addresses (userspace)
e Size configurable via TCR_EL1.T0SZ
e Page table base TTBRO_EL1

e High virtual addresses (kernel)

e Size configurable via TCR_EL1.T1SZ
e Page table base TTBR1_EL1

Virtual memory

7% : LoyenWang

Physical memory

Reserved

Peripherals

Translation table

TTBR1_EL1

Reserved

RAM

Translation table

Reserved
Peripherals
ROM
Kerel
Not available space Reserved
in EL2 or EL3
RAM
OxFFFF0000_00000000
Reserved
O0X0000FFFF_FFFFFFFF
User { i
space
_00000000 Rosswved

TTBRO_ELO

Reserved

22

ARMVv8-A Virtualization Extensions - Virtual Memory

ELO/1 (Guest OS)

e Two stage address translation

Virtual Address Space

e Guest virtual address — What the OS think

is the Physical
Peripherals Address Space Physical Address Space

address \
. Tables Tables DDR
— Host physical address /
St 2
Flash Flash

— Intermediate physical

Kernel

DDR

Translation

e Set stage 2 page table e
base via VTTBR_EL2 e
e Enable via HCR_EL2.VM
e TLB entries tagged with
VMID from VTTBR_EL2

23

ARMVv8-A Virtualization Extensions - Virtual Memory

Virtual Address Space Virtual Address Space
e For ELO/EL1 and For EL3 and
EL2 (HyperV|50r) ELO/EL2 when E2H=1 EL2 when E2H=0

e Separate page tables for EL2 OXFFFF_EFFF_FFFF_FFFF
e Base address in TTBRO_EL2 Kernel space

OXFFF0_0000_0000 0000
e Only low virtual addresses
available (no TTBR1_EL2)

0xX000F_FFFF_FFFF_FFFF

0x000F_FFFF_FFFF_FFFF
User space Single space
0x0000_0000_0000_0000 0x0000_0000_0000_0000

24

ARMVv8-A Virtualization Extensions - Trapping operations

Instructions to be trapped

vCPU
configurable in HCR_EL2
———— MRS X0,ID_AA64MMFRO_EL1 R S —

1. Trap triggers exception Trap exception 4| weeeeeemeemecceemeeeemecmeeemennens

into EL2

ERET
ESR_EL2 Trap, ID_AA64MMFRO_EL1
2. Inspect ESR_EL2 for e
. trap_handler:
exception reason identify trapped op()
> get_virt_value()

3 Modf g est state set_virt value in_vcpu_context()
: ify gu

return_to_vcpu()

4. Return to guest via ERET Hypervisor

23

ARMv8-A Virtualization Extensions - Exception routing

Exceptions/IRQs/FIQs can be
intercepted by hypervisor

e Enabled via
HCR_EL2.IMO

e All IRQs routed to EL2
instead of ELO/EL1

e Hypervisor can send
virtual interrupts to
guest by setting
HCR_EL2.VI

vCPU

I Application I

[Kernel)1—‘

GIC

1
—— \oC=nT0,

Hypervisor

Interrupt Controller
2 x

26

Setting up virtualization

e Allocate space for guest state

e Setup Hypervisor Configuration register
HCR_EL2

e Trapped instructions
e Exception routing

e Set up stage 2 translation tables in VTTBR_EL2

e Page table base
e VMID

e Setup EL1/ELO registers for guest
e Execute ERET to return to guest VM

e Wait for hypervisor trap

27

Problems with ARM Virtualization Extension

The ARM virtualization extensions are great for type 1 (bare metal) hypervisors, but
not so much for type 2 (hosted) hypervisors.

e Cannot run a kernel designed for EL1
in EL2. EL2 is not a superset of
ELO/ELl features. OS Kernel Hypervisor

e Different system registers in
EL1/EL2
e Different virtual address space

Split-Mode Virtualization

Kernel mode

e Only low virtual addresses usable

in EL2 (conflicts with userspace) JeEode

e Host kernel in EL1 + small hypervisor
shim in EL2

28

ARMVv8.1 - Virtualization Host Extensions

ARM Virtualization Host Extensions allow unmodified EL1 kernels to run in EL2 (good

for type 2 hosted hypervisors)

e Lower+upper virtual address regions
in EL2, similar to EL1
e Enable via HCR_EL2.E2H
e Set HCR_EL2.TGE when running host
applications to route all exceptions
to EL2
e Automatically redirect system register
access to EL2 registers

e ELI registers still available as
<reg>_EL12

HCR_EL2.E2H==1

ELO Guest App(s) Guest App(s) : Host Appl(s)
ELL Guest OS Guest OS
-

: Host OS

EL3

EL2: MSR TTBRO_EL1l, x0 —=

ARMv8.4 - Nested Virtualization

e Guest Hypervisors can't run in EL2

e ARMVS8.3: Trap accesses to _EL2
registers

e Process the requested access in EL2

30

ARMv8.4 - Nested Virtualization

e Guest Hypervisors can't run in EL2

e ARMVS8.3: Trap accesses to _EL2
registers

e Process the requested access in EL2

But that’s slow

30

ARMv8.4 - Nested Virtualization

e Guest Hypervisors can't run in EL2

e ARMVS8.3: Trap accesses to _EL2
registers

Guest's Guest Guest's Hypervisor

e Process the requested access in EL2

EL1

But that’s slow

e Solution:

Context switch
NV==0 & NV==1

e Capture the state of Guest-_EL2 £
registers Host Hypervisor

e State location in VNCR_EL2

e Handle on ERET

e Controlled by HCR_EL2.NV*-bits

30

RISC-V

Hypervisor Extension, V0.6.1

e Draft Version 0.6.1, not yet accepted as standard
e Hosting of guest OS atop type-1 (bare-meta) or type-2

(hosted) hypervisor
e Focused on CPU Virtualization ‘
e Full duplicate of the CPU state (new and shadow CSRs) RISC ®

e Two-Stage Address Translation (enabled when V = 1)
e No dedicated 1/0O virtualization specified

31

Privilege Modes

Machine (M)

Hypervisor-Extended
e S-mode changed to HS-mode Supervisor (HS)

e In VU- and VS-mode V =1

. . . Virtualized
e HS has higher interrupt priority than Sup(lerr:iascljzre(VS)
VS |
Virtualized User (VU) User (U)

Figure 6: RISC-V Privilege Levels

32

e Changed Machine Level Regs (added MPV GVA fields to mstatush)
e Hypervisor status hstatus

e hedeleg & hideleg delegate traps to VS-Mode guest

e Interrupt & Timing registers

e Trap registers htval, htinst

e Guest stage translation hgatp

e Accesses to following registers substitute to respective shadow registers (e.g.
access to sstatus is directed to vsstatus)

e sstatus, sip, sie, stvec, sscratch, sepc, scause, stval, satp

83

New Instructions

e Virtual-Machine Load and Store

e only in M-mode or HS-mode

e access guest virtual address space

e inspect guest memory without mapping it
e Privileged Fence

e Applies to the new memory spaces
e Structures controlled by vsatp or hgatp

34

Two-Stage Address Translation

Virtual address converted to guest physical address (VS-stage)

Guest physical address to supervisor physical address (G-stage)

Root page table expanded by factor four to 16KiB

Same format as single-stage address translation

85

Reference Implementation

Virtualised Non-virtualised
Environment Environment
e Rocket chip core
3
e Portet 'Bao’ Hypervisor from ARM to §§
Q
RISC-V i
&3
e Optimized PLIC and CLINT &
e Still no IOMMU, would improve DMA M Firmware (SBI) M

accesses (no traps to HS-mode
(§) Figure 7: RISC-V Hypervisor and Guest OS

Privileges

36

References i

[1]

2]

[3]

AMDG64 Architecture Programmer’s Manual. Volume 2: System Programming.
https://www.amd.com/system/files/TechDocs/24593.pdf. Online; accessed
25 April 2021.

Keith Adams et. al. A Comparison of Software and Hardware Techniques for x86
Virtualization. https://www.vmware.com/pdf/asplos235_adams.pdf. Online;
accessed 25 April 2021.

Fengwei Zhang et. al. A comparison study of intel SGX and AMD memory
encryption technology.
https://dl.acm.org/doi/pdf/10.1145/3214292.3214301. Online; accessed
25 April 2021.

37

https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.vmware.com/pdf/asplos235_adams.pdf
https://dl.acm.org/doi/pdf/10.1145/3214292.3214301

References ii

[4] Niels Penneman et. al. Formal virtualization requirements for the ARM
architecture. https://users.elis.ugent.be/~brdsutte/research/
publications/2013JSApenneman.pdf. Online; accessed 25 April 2021.

[5] ARM Architecture Reference Manual ARMv7-A. ARMv7-A processor modes.
https://developer.arm.com/documentation/ddi0406/b/
System-Level-Architecture/The-System-Level-Programmers--Model/
ARM-processor-modes-and-core-registers/ARM-processor-modes?lang=
en. Online; accessed 25 April 2021.

38

https://users.elis.ugent.be/~brdsutte/research/publications/2013JSApenneman.pdf
https://users.elis.ugent.be/~brdsutte/research/publications/2013JSApenneman.pdf
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/The-System-Level-Programmers--Model/ARM-processor-modes-and-core-registers/ARM-processor-modes?lang=en
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/The-System-Level-Programmers--Model/ARM-processor-modes-and-core-registers/ARM-processor-modes?lang=en
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/The-System-Level-Programmers--Model/ARM-processor-modes-and-core-registers/ARM-processor-modes?lang=en
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/The-System-Level-Programmers--Model/ARM-processor-modes-and-core-registers/ARM-processor-modes?lang=en

References iii

[6]

[7]

ARM Architecture Reference Manual ARMv7-A. ARMv7-A privilege levels.
https://developer.arm.com/documentation/ddi0406/c/
Application-Level-Architecture/Application-Level-Memory-Model/
Access-rights/
Processor-privilege-levels--execution-privilege--and-access-privilege?

lang=en. Online; accessed 25 April 2021.

ARM Developers Guide. ARMv8-A exception model. https://developer.arm.

com/documentation/102412/0100/Privilege-and-Exception-levels
Online; accessed 25 April 2021.

39

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Access-rights/Processor-privilege-levels--execution-privilege--and-access-privilege?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Access-rights/Processor-privilege-levels--execution-privilege--and-access-privilege?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Access-rights/Processor-privilege-levels--execution-privilege--and-access-privilege?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Access-rights/Processor-privilege-levels--execution-privilege--and-access-privilege?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Access-rights/Processor-privilege-levels--execution-privilege--and-access-privilege?lang=en
https://developer.arm.com/documentation/102412/0100/Privilege-and-Exception-levels
https://developer.arm.com/documentation/102412/0100/Privilege-and-Exception-levels

References iv

[8] ARM Developers Guide. AArch64 Exception model. https://developer.arm.
com/documentation/102412/0100/Execution-and-Security-states. Onling;
accessed 25 April 2021.

[9] ARM Developers Guide. AArch64 memory management. https://developer.
arm.com/documentation/101811/0100/Address-spaces-in-AArch64. Online;
accessed 25 April 2021.

[10] ARM Developers Guide. AArch64 Virtualization.
https://developer.arm.com/documentation/102142/1latest. Online;
accessed 25 April 2021.

40

https://developer.arm.com/documentation/102412/0100/Execution-and-Security-states
https://developer.arm.com/documentation/102412/0100/Execution-and-Security-states
https://developer.arm.com/documentation/101811/0100/Address-spaces-in-AArch64
https://developer.arm.com/documentation/101811/0100/Address-spaces-in-AArch64
https://developer.arm.com/documentation/102142/latest

References v

[11] Andrew Waterman et. al. The RISC-V Instruction Set Manual Volume II:
Privileged Architecture. https://github.com/riscv/riscv-isa-manual/
releases/tag/draft-20210402-1271737. Online; accessed 25 April 2021.

[12] Bruno Sa et. al. A First Look at RISC-V Virtualization from an Embedded
Systems Perspective. https://arxiv.org/pdf/2103.14951.pdf. Online;
accessed 25 April 2021.

[13] Andrew Waterman et. al. RISC-V Hypervisor Extension. https://riscv.org/
wp-content/uploads/2017/12/Tue0942-riscv-hypervisor-waterman.pdf.
Online; accessed 25 April 2021.

41

https://github.com/riscv/riscv-isa-manual/releases/tag/draft-20210402-1271737
https://github.com/riscv/riscv-isa-manual/releases/tag/draft-20210402-1271737
https://arxiv.org/pdf/2103.14951.pdf
https://riscv.org/wp-content/uploads/2017/12/Tue0942-riscv-hypervisor-waterman.pdf
https://riscv.org/wp-content/uploads/2017/12/Tue0942-riscv-hypervisor-waterman.pdf

	AMD
	ARM
	RISC-V

