
Hardware-assisted Virtualization on non-Intel Processors

Alexander Deibel, Florian Kargl, Stefan Weiglhofer, Hannes Weissteiner

May 10, 2021

1



Content

Overview of virtualization techniques on various architectures

• AMD

• ARM

• RISC-V

2



AMD



AMD Virtualization (AMD-V)

• Released in 2006 for Athlon 64 series

• Basic functionality supported by all Zen-based

AMD processors

• Some extensions (e.g. AMD-SEV) only for

higher-end/server models

• Similar concepts to Intel VT-x

3



AMD-V Architecture

• Adds new privilege mode exclusively for

hypervisor use

• VMM in ”ring -1”

• Two operation modes:

• Host mode

(similar to VMX Root Operation)

• Guest mode

(similar to VMX Non-Root Operation)

4



AMD-V Instructions

Setting EFER.SVME to 1 enables the following instructions (similar to VMXON

instruction on Intel):

• VMRUN - to enter guest mode

• VMLOAD/VMSAVE - saves/restores additional guest state information

• CLGI/STGI - sets/clears the global interrupt flag (GIF)

• INVLPGA - allows to selectively invalidate TLB mappings using a given ID (ASID)

• VMMCALL - a way for a guest to explicitly call the VMM

• SKINIT - used to verify and load trusted software (e.g. a VMM)

5



Virtual Machine Control Block (VMCB)

• Data structure (similar to VMCS on Intel)

• Contains:

• Control bits to define the guest exit behaviour

• Control bits that specify the execution environment (e.g. nested paging)

• A guest processor state (e.g. control registers, ...)

• VMRUN/VMEXIT

only saves/restores minimal amount of state information

• VMLOAD/VMSAVE

used to load/store additional state information (e.g. hidden processor states, ...)

6



Entering VMM mode

• Enter guest mode with VMRUN instruction

(comparable to VMLAUNCH/VMRESUME)

• Guest runs until a #VMEXIT occurs

7



Exiting VMM mode (#VMEXIT)

• Guest runs until intercepts happens:

• Exception or Interrupt

• Instruction (e.g. VMMCALL)

• Information about the exit reason is put into the VMCB

• Advanced Virtual Interrupt Controller (AVIC)

• Reduction of interrupt overhead for virtualization

8



AMD-V Further Features

• Second Level Address Translation

Nested Page tables (NPT)/Rapid Virtualization Indexing (RVI) (EPT on Intel):

• Enable by setting NP_ENABLE bit in the VMCB to 1

• Set NPT base pointer via N_CR3 in the VMCB

• TLB Control

TLB entries are tagged with Address Space Identifier (ASID) to differentiate

between guest physical address spaces

• I/O-Virtualization

AMD-Vi: enables virtualization of I/O-devices through the use of DMA and

interrupt remapping

9



AMD-V Security Extensions

• Secure Encrypted Virtualization (SEV)

Guards against guest memory inspection by

assigning a unique AES encryption key to

automatically encrypt their in-use data

• SEV Encrypted State (SEV-ES)

Guest register state is encrypted on each

hypervisor transition

• SEV Secure Nested Paging (SEV-SNP)

Adds memory integrity protection

10



ARM



Not too long ago in a galaxy not all that far away...

ARMv7-A without extensions

(∼2005-2011)

• Lots of different processor
modes

• Different registers available

• Different stack space

• Determines privilege level

• Some operations only

available in privileged modes

• No virtualization support Figure 1: ARMv7-A processor modes

11



ARM virtualization challenges

Popek and Goldberg virtualization requirements

• Equivalence

Guest software behaves identical to native execution

• Resource control

Guest software is not allowed to access physical state and resources

• Efficiency

All non-sensitive instructions are executed natively without VMM intervention

12



ARM virtualization challenges

• Sensitive instructions

Instructions that change/read system

state, access physical resources, ...

• Privileged instructions

Privileged instructions are always

trapped into a privileged mode when

executed in an unprivileged mode.

Popek and Goldberg theorem

If the set of sensitive instructions is a

subset of privileged instructions, a system

can be efficiently virtualized.

⇒ Trap-and-emulate virtualization

13



ARM virtualization challenges

Problems with ARMv7-A:

• Not all sensitive instructions are privileged and cause a trap, e.g.

• Interaction with coprocessors (modify system state)

• Wait for interrupt

• Return from event handlers (change processor mode)

⇒ ARMv7-A can not be virtualized via trap-and-emulate!

14



ARM virtualization challenges

But: Not all is lost, virtualization still possible via dynamic binary translation

• VMM interprets guest code at runtime and emulates sensitive instructions

• Unfortunately quite slow...

Full system virtualization not used very often for ARMv7-A

⇒ Paravirtualization to the rescue

15



Solving the ARM virtualization problem

Virtualization Extensions introduced for the ARMv7-A architecture in 2011 to solve

these problems.

• New Hyp mode with higher privilege level 2

• Allow sensitive instructions to be trapped into the hypervisor mode

• Two stage address translation for VMs (similar to Intel EPT)

• IRQs and exceptions can be routed to the hypervisor + virtual IRQ injection

• HVC hypervisor call instruction (for paravirtualization)

• Virtualization support for standard peripherals (interrupt controller, timer)

• No dedicated VM control block in memory. State needs to be saved/restored by

the hypervisor.

16



ARMv7-A Virtualization Extensions

Figure 2: ARMv7-A modes
Figure 3: ARMv7-A modes with virtualization

extension

17



ARMv7-A Virtualization Extensions - Privilege Levels

’Un-/privileged’ renamed to

privilege level (PL)

• PL0: User applications

• PL1: (Guest) kernel

• PL2: Hypervisor

Figure 4: ARMv7-A virtualization extension privilege levels

18



Armv8-A overview

• Exception Levels

• Execution states

• Memory Management

Figure 5: Arm

19



Armv8-A overview

20



Armv8-A Virtual Memory

21



ARMv8-A - Virtual Memory

EL0/EL1 virtual address space is split in two parts

• Low virtual addresses (userspace)

• Size configurable via TCR_EL1.T0SZ

• Page table base TTBR0_EL1

• High virtual addresses (kernel)

• Size configurable via TCR_EL1.T1SZ

• Page table base TTBR1_EL1

22



ARMv8-A - Virtual Memory

EL0/EL1 virtual address space is split in two parts

• Low virtual addresses (userspace)

• Size configurable via TCR_EL1.T0SZ

• Page table base TTBR0_EL1

• High virtual addresses (kernel)

• Size configurable via TCR_EL1.T1SZ

• Page table base TTBR1_EL1

22



ARMv8-A Virtualization Extensions - Virtual Memory

EL0/1 (Guest OS)

• Two stage address translation

• Guest virtual address

→ Intermediate physical

address

→ Host physical address

• Set stage 2 page table

base via VTTBR_EL2

• Enable via HCR_EL2.VM

• TLB entries tagged with

VMID from VTTBR_EL2

23



ARMv8-A Virtualization Extensions - Virtual Memory

EL2 (Hypervisor)

• Separate page tables for EL2

• Base address in TTBR0_EL2

• Only low virtual addresses

available (no TTBR1_EL2)

24



ARMv8-A Virtualization Extensions - Trapping operations

Instructions to be trapped

configurable in HCR_EL2

1. Trap triggers exception

into EL2

2. Inspect ESR_EL2 for

exception reason

3. Modify guest state

4. Return to guest via ERET

25



ARMv8-A Virtualization Extensions - Exception routing

Exceptions/IRQs/FIQs can be

intercepted by hypervisor

• Enabled via
HCR_EL2.IMO

• All IRQs routed to EL2

instead of EL0/EL1

• Hypervisor can send

virtual interrupts to

guest by setting

HCR_EL2.VI

26



Setting up virtualization

• Allocate space for guest state

• Setup Hypervisor Configuration register
HCR_EL2

• Trapped instructions

• Exception routing

• Set up stage 2 translation tables in VTTBR_EL2

• Page table base

• VMID

• Setup EL1/EL0 registers for guest

• Execute ERET to return to guest VM

• Wait for hypervisor trap

27



Problems with ARM Virtualization Extension

The ARM virtualization extensions are great for type 1 (bare metal) hypervisors, but

not so much for type 2 (hosted) hypervisors.

• Cannot run a kernel designed for EL1
in EL2. EL2 is not a superset of
EL0/EL1 features.

• Different system registers in

EL1/EL2

• Different virtual address space

• Only low virtual addresses usable

in EL2 (conflicts with userspace)

• Host kernel in EL1 + small hypervisor

shim in EL2

28



ARMv8.1 - Virtualization Host Extensions

ARM Virtualization Host Extensions allow unmodified EL1 kernels to run in EL2 (good

for type 2 hosted hypervisors)

• Lower+upper virtual address regions
in EL2, similar to EL1

• Enable via HCR_EL2.E2H

• Set HCR_EL2.TGE when running host

applications to route all exceptions

to EL2

• Automatically redirect system register
access to EL2 registers

• EL1 registers still available as

<reg>_EL12

29



ARMv8.4 - Nested Virtualization

• Guest Hypervisors can’t run in EL2

• ARMv8.3: Trap accesses to _EL2

registers

• Process the requested access in EL2

But that’s slow

• Solution:

• Capture the state of Guest-_EL2

registers

• State location in VNCR_EL2

• Handle on ERET

• Controlled by HCR_EL2.NV*-bits

30



ARMv8.4 - Nested Virtualization

• Guest Hypervisors can’t run in EL2

• ARMv8.3: Trap accesses to _EL2

registers

• Process the requested access in EL2

But that’s slow

• Solution:

• Capture the state of Guest-_EL2

registers

• State location in VNCR_EL2

• Handle on ERET

• Controlled by HCR_EL2.NV*-bits

30



ARMv8.4 - Nested Virtualization

• Guest Hypervisors can’t run in EL2

• ARMv8.3: Trap accesses to _EL2

registers

• Process the requested access in EL2

But that’s slow

• Solution:

• Capture the state of Guest-_EL2

registers

• State location in VNCR_EL2

• Handle on ERET

• Controlled by HCR_EL2.NV*-bits

30



RISC-V



Hypervisor Extension, V0.6.1

• Draft Version 0.6.1, not yet accepted as standard

• Hosting of guest OS atop type-1 (bare-meta) or type-2

(hosted) hypervisor

• Focused on CPU Virtualization

• Full duplicate of the CPU state (new and shadow CSRs)

• Two-Stage Address Translation (enabled when V = 1)

• No dedicated I/O virtualization specified

31



Privilege Modes

• S-mode changed to HS-mode

• In VU- and VS-mode V = 1

• HS has higher interrupt priority than

VS

Figure 6: RISC-V Privilege Levels

32



New Registers

• Changed Machine Level Regs (added MPV GVA fields to mstatush)

• Hypervisor status hstatus

• hedeleg & hideleg delegate traps to VS-Mode guest

• Interrupt & Timing registers

• Trap registers htval, htinst

• Guest stage translation hgatp

• Accesses to following registers substitute to respective shadow registers (e.g.
access to sstatus is directed to vsstatus)

• sstatus, sip, sie, stvec, sscratch, sepc, scause, stval, satp

33



New Instructions

• Virtual-Machine Load and Store

• only in M-mode or HS-mode

• access guest virtual address space

• inspect guest memory without mapping it

• Privileged Fence

• Applies to the new memory spaces

• Structures controlled by vsatp or hgatp

34



Two-Stage Address Translation

• Virtual address converted to guest physical address (VS-stage)

• Guest physical address to supervisor physical address (G-stage)

• Root page table expanded by factor four to 16KiB

• Same format as single-stage address translation

35



Reference Implementation

• Rocket chip core

• Portet ’Bao’ Hypervisor from ARM to

RISC-V

• Optimized PLIC and CLINT

• Still no IOMMU, would improve DMA

accesses (no traps to HS-mode)
Figure 7: RISC-V Hypervisor and Guest OS

Privileges

36



References i

[1] AMD64 Architecture Programmer’s Manual. Volume 2: System Programming.

https://www.amd.com/system/files/TechDocs/24593.pdf. Online; accessed

25 April 2021.

[2] Keith Adams et. al. A Comparison of Software and Hardware Techniques for x86

Virtualization. https://www.vmware.com/pdf/asplos235_adams.pdf. Online;

accessed 25 April 2021.

[3] Fengwei Zhang et. al. A comparison study of intel SGX and AMD memory

encryption technology.

https://dl.acm.org/doi/pdf/10.1145/3214292.3214301. Online; accessed

25 April 2021.

37

https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.vmware.com/pdf/asplos235_adams.pdf
https://dl.acm.org/doi/pdf/10.1145/3214292.3214301


References ii

[4] Niels Penneman et. al. Formal virtualization requirements for the ARM

architecture. https://users.elis.ugent.be/~brdsutte/research/

publications/2013JSApenneman.pdf. Online; accessed 25 April 2021.

[5] ARM Architecture Reference Manual ARMv7-A. ARMv7-A processor modes.

https://developer.arm.com/documentation/ddi0406/b/

System-Level-Architecture/The-System-Level-Programmers--Model/

ARM-processor-modes-and-core-registers/ARM-processor-modes?lang=

en. Online; accessed 25 April 2021.

38

https://users.elis.ugent.be/~brdsutte/research/publications/2013JSApenneman.pdf
https://users.elis.ugent.be/~brdsutte/research/publications/2013JSApenneman.pdf
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/The-System-Level-Programmers--Model/ARM-processor-modes-and-core-registers/ARM-processor-modes?lang=en
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/The-System-Level-Programmers--Model/ARM-processor-modes-and-core-registers/ARM-processor-modes?lang=en
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/The-System-Level-Programmers--Model/ARM-processor-modes-and-core-registers/ARM-processor-modes?lang=en
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/The-System-Level-Programmers--Model/ARM-processor-modes-and-core-registers/ARM-processor-modes?lang=en


References iii

[6] ARM Architecture Reference Manual ARMv7-A. ARMv7-A privilege levels.

https://developer.arm.com/documentation/ddi0406/c/

Application-Level-Architecture/Application-Level-Memory-Model/

Access-rights/

Processor-privilege-levels--execution-privilege--and-access-privilege?

lang=en. Online; accessed 25 April 2021.

[7] ARM Developers Guide. ARMv8-A exception model. https://developer.arm.

com/documentation/102412/0100/Privilege-and-Exception-levels.

Online; accessed 25 April 2021.

39

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Access-rights/Processor-privilege-levels--execution-privilege--and-access-privilege?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Access-rights/Processor-privilege-levels--execution-privilege--and-access-privilege?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Access-rights/Processor-privilege-levels--execution-privilege--and-access-privilege?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Access-rights/Processor-privilege-levels--execution-privilege--and-access-privilege?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Access-rights/Processor-privilege-levels--execution-privilege--and-access-privilege?lang=en
https://developer.arm.com/documentation/102412/0100/Privilege-and-Exception-levels
https://developer.arm.com/documentation/102412/0100/Privilege-and-Exception-levels


References iv

[8] ARM Developers Guide. AArch64 Exception model. https://developer.arm.

com/documentation/102412/0100/Execution-and-Security-states. Online;

accessed 25 April 2021.

[9] ARM Developers Guide. AArch64 memory management. https://developer.

arm.com/documentation/101811/0100/Address-spaces-in-AArch64. Online;

accessed 25 April 2021.

[10] ARM Developers Guide. AArch64 Virtualization.

https://developer.arm.com/documentation/102142/latest. Online;

accessed 25 April 2021.

40

https://developer.arm.com/documentation/102412/0100/Execution-and-Security-states
https://developer.arm.com/documentation/102412/0100/Execution-and-Security-states
https://developer.arm.com/documentation/101811/0100/Address-spaces-in-AArch64
https://developer.arm.com/documentation/101811/0100/Address-spaces-in-AArch64
https://developer.arm.com/documentation/102142/latest


References v

[11] Andrew Waterman et. al. The RISC-V Instruction Set Manual Volume II:

Privileged Architecture. https://github.com/riscv/riscv-isa-manual/

releases/tag/draft-20210402-1271737. Online; accessed 25 April 2021.

[12] Bruno Sà et. al. A First Look at RISC-V Virtualization from an Embedded

Systems Perspective. https://arxiv.org/pdf/2103.14951.pdf. Online;

accessed 25 April 2021.

[13] Andrew Waterman et. al. RISC-V Hypervisor Extension. https://riscv.org/

wp-content/uploads/2017/12/Tue0942-riscv-hypervisor-waterman.pdf.

Online; accessed 25 April 2021.

41

https://github.com/riscv/riscv-isa-manual/releases/tag/draft-20210402-1271737
https://github.com/riscv/riscv-isa-manual/releases/tag/draft-20210402-1271737
https://arxiv.org/pdf/2103.14951.pdf
https://riscv.org/wp-content/uploads/2017/12/Tue0942-riscv-hypervisor-waterman.pdf
https://riscv.org/wp-content/uploads/2017/12/Tue0942-riscv-hypervisor-waterman.pdf

	AMD
	ARM
	RISC-V

