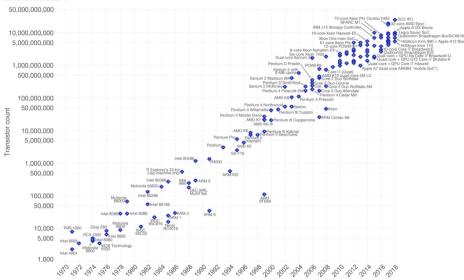
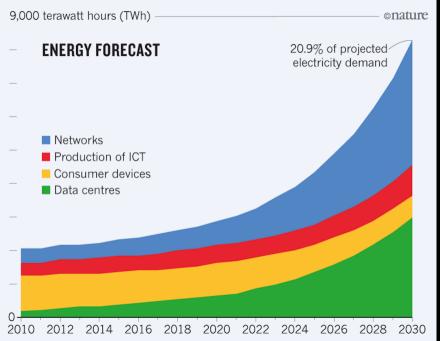


Cloud Operating Systems

Daniel Gruss (+ credits to Peter Lipp, Sina Karvandi (@Intel80x86), and Fabian Rauscher) 2021-03-15




Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

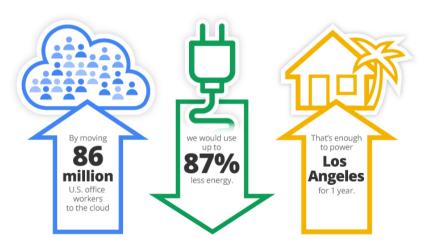
from outages blamed on cryptocurrency mining activities. 9

Despite the fact that, in both examples. policymakers did not decide to take action because of environmental concerns, the examples illustrate how policymakers might have multiple options in putting a halt to cryptocurrency mining. Although Bitcoin might be a decentralized currency, many aspects of the ecosystem surrounding it are not. The competitive Bitcoin market drives miners to take advantage of economies of scale in lowering costs, which also makes it harder for them to operate under the radar. Large-scale miners can easily be targeted with higher electricity rates, moratoria, or, in the most extreme case, confiscation of the equipment used. Moreover, the supply chain of specialized Bitcoin mining de-

CONCLUSION

As the price of Bitcoin rises, the negative externalities associated with Ritcoin mining increase in kind. This Commentary has shown how a simple economic model might be used to estimate the potential environmental impact of Bitcoin mining for a given Bitcoin price. These estimates reveal that the record-breaking surge in Bitcoin price at the start of 2021 could result in the network consuming as much energy as all data centers globally, with an associated carbon footprint matching London's footprint size. Beyond these environmental impacts, the production of specialized mining devices might exacerbate the global shortage of chips, which could effect the ability to work from home, the economic recovery after the COVID-19 crisis, and

- Joule 3, 893–898.
- Arab News. (2021). Crypto-miners take down Iran electric grids, prompting crackdown. https://www.arabnews.com/node/1794836/ middle-east.
- Blandin, A., Pieters, G.C., Wu, Y., Eisermann, T., Dek, A., Taylor, S., and Njoki, D. (2020).
 3rd global cryptoasset benchmarking study. https://www.jbs.cam.ac.uk/faculty-research/centres/alternative-finance/publications/ 3rd-global-cryptoasset-benchmarkingstudy/.
- Stoll, C., Klaaßen, L., and Gallersdörfer, U. (2019). The Carbon Footprint of Bitcoin. Joule 3, 1647–1661.
- Gallersdörfer, U., Klaaßen, L., and Stoll, C. (2020). Energy Consumption of Cryptocurrencies Beyond Bitcoin. Joule 4, 1843–1846.
- Jin, H., Busvine, D., and Kirton, D. (2020). Analysis: Global chip shortage threatens production of laptops, smartphones and more (Reuters).
- de Vries, A. (2020). Bitcoin's energy consumption is underestimated: A market dynamics approach. Energy Res. Soc. Sci. 70, 101721


memegenerator.net

1999	2019	2029
I DEVELOPED THE ENTIRE SOFTWARE IN 120 LINES	I WROTE 1 COMPONENT IN 10,000 LINES!	I DEVELOPED THE ENTIRE SOFTWARE IN 120 LINES!

Moving to the cloud can save up to 87% of IT energy

Cloud means Efficiency

ullet Processes used to have access to all physical memory o that's not efficient!

- ullet Processes used to have access to all physical memory o that's not efficient!
- ightarrow Virtualize memory ightarrow processes can share resources of one machine and utilize it better

- ullet Processes used to have access to all physical memory o that's not efficient!
- ightarrow Virtualize memory ightarrow processes can share resources of one machine and utilize it better
- Processes need all the same pages \rightarrow that's not efficient!

- ullet Processes used to have access to all physical memory o that's not efficient!
- ightarrow Virtualize memory ightarrow processes can share resources of one machine and utilize it better
- Processes need all the same pages \rightarrow that's not efficient!
- \rightarrow Let them share memory, using COW, page deduplication, etc.

- ullet Processes used to have access to all physical memory o that's not efficient!
- ightarrow Virtualize memory ightarrow processes can share resources of one machine and utilize it better
- Processes need all the same pages \rightarrow that's not efficient!
- ightarrow Let them share memory, using COW, page deduplication, etc.
- \bullet Processes often cannot do anything but wait \to that's not efficient!

- ullet Processes used to have access to all physical memory o that's not efficient!
- ightarrow Virtualize memory ightarrow processes can share resources of one machine and utilize it better
- Processes need all the same pages \rightarrow that's not efficient!
- \rightarrow Let them share memory, using COW, page deduplication, etc.
- ullet Processes often cannot do anything but wait o that's not efficient!
- \rightarrow Let other processes run in between

Efficiency

- Efficiency
- Isolation of tenants (security, reliability, availability)

- Efficiency
- Isolation of tenants (security, reliability, availability)
- Abstraction of hardware

What is Virtualization?

Virtualization allows to represent resources in a computer in a way they can be used easily and without the need to know details of their properties

• Decouple operating system from hardware

- Decouple operating system from hardware
 - "computer in computer" implemented in software

- Decouple operating system from hardware
 - "computer in computer" implemented in software
 - includes devices (network, keyboard, sound...)

- Decouple operating system from hardware
 - "computer in computer" implemented in software
 - includes devices (network, keyboard, sound...)
- OS in VM "sees" its hardware, irrespective from the actual hardware in use

- Decouple operating system from hardware
 - "computer in computer" implemented in software
 - includes devices (network, keyboard, sound...)
- OS in VM "sees" its hardware, irrespective from the actual hardware in use
- OS does not know if HW is concurrently used by other VMS

Why virtualization

Why virtualization

• Cheaper hardware: one server for one task was common

- Cheaper hardware: one server for one task was common
- most of these servers: idle time 90%

- Cheaper hardware: one server for one task was common
- most of these servers: idle time 90%
- cost issue:

- Cheaper hardware: one server for one task was common
- most of these servers: idle time 90%
- cost issue:
 - support, maintenance

- Cheaper hardware: one server for one task was common
- most of these servers: idle time 90%
- cost issue:
 - support, maintenance
 - power consumption (operation, cooling)

- Cheaper hardware: one server for one task was common
- most of these servers: idle time 90%
- cost issue:
 - support, maintenance
 - power consumption (operation, cooling)
 - space

- Cheaper hardware: one server for one task was common
- most of these servers: idle time 90%
- cost issue:
 - support, maintenance
 - power consumption (operation, cooling)
 - space
- Virtualization allows consolidation

- Cheaper hardware: one server for one task was common
- most of these servers: idle time 90%
- cost issue:
 - support, maintenance
 - power consumption (operation, cooling)
 - space
- Virtualization allows consolidation
 - multiple servers on one box

• Better hardware utilization

- Better hardware utilization
- Lower administration cost

- Better hardware utilization
- Lower administration cost
- long-term operations of older applications

- Better hardware utilization
- Lower administration cost
- long-term operations of older applications
- lower down-times

- Better hardware utilization
- Lower administration cost
- long-term operations of older applications
- lower down-times
- simple migration to more powerful hardware

• Performance cost: slower I/O operation

- Performance cost: slower I/O operation
- single point of failure: requires better hardware reliability

- Performance cost: slower I/O operation
- single point of failure: requires better hardware reliability
- security gets more complex

• Virtualization no significant role in internet hosting

- Virtualization no significant role in internet hosting
- often PaaS

- Virtualization no significant role in internet hosting
- often PaaS
- Web hoster (FTP access, HTTP website)

- Virtualization no significant role in internet hosting
- often PaaS
- Web hoster (FTP access, HTTP website)
- Isolation on the OS level (tenants as users)

- Virtualization no significant role in internet hosting
- often PaaS
- Web hoster (FTP access, HTTP website)
- Isolation on the OS level (tenants as users)
- $\bullet \ \ \mathsf{no} \ \mathsf{hardware} \ \mathsf{support} \ \to \mathsf{expensive} \ + \ \mathsf{many} \ \mathsf{problems}$

• OS-level Virtualization

Modern Virtualization

- OS-level Virtualization
- Para-Virtualization

Modern Virtualization

- OS-level Virtualization
- Para-Virtualization
- Full Virtualization

Modern Virtualization

- OS-level Virtualization
- Para-Virtualization
- Full Virtualization
- Hardware-Assisted Virtualization

• integrated into kernel

10

OS-level Virtualization

- integrated into kernel
- all application software intended to run in a virtual environment get strictly separated virtual runtime environments (container, jail)

OS-level Virtualization

- integrated into kernel
- all application software intended to run in a virtual environment get strictly separated virtual runtime environments (container, jail)
- no separate kernels only process level virtualization

10

- integrated into kernel
- all application software intended to run in a virtual environment get strictly separated virtual runtime environments (container, jail)
- no separate kernels only process level virtualization
- can't run other OSes only for applications

10

- integrated into kernel
- all application software intended to run in a virtual environment get strictly separated virtual runtime environments (container, jail)
- no separate kernels only process level virtualization
- can't run other OSes only for applications
- examples: OpenVZ, Docker, (s)chroot

Para-Virtualization

• Cooperation with OS: OS is aware of virtualization

- Cooperation with OS: OS is aware of virtualization
- needs to modify guest

- Cooperation with OS: OS is aware of virtualization
- needs to modify guest
- not usable for closed source OSes

• OS not aware of being virtualized

www.tugraz.at

- OS not aware of being virtualized
- no need to adapt guest

- OS not aware of being virtualized
- no need to adapt guest
- reduced performance

- OS not aware of being virtualized
- no need to adapt guest
- reduced performance
 - up to 25%

- OS not aware of being virtualized
- no need to adapt guest
- reduced performance
 - up to 25%
- full virtualization of HW required (e.g., emulation via qemu)

- OS not aware of being virtualized
- no need to adapt guest
- reduced performance
 - up to 25%
- full virtualization of HW required (e.g., emulation via qemu)
 - virtual machines not allowed to access physical components

- OS not aware of being virtualized
- no need to adapt guest
- reduced performance
 - up to 25%
- full virtualization of HW required (e.g., emulation via gemu)
 - virtual machines not allowed to access physical components
 - every physical component has to be virtualized and requires drivers in OS

• Guest no longer runs in kernel mode (Ring 0)

- Guest no longer runs in kernel mode (Ring 0)
 - parts that require kernel privileges won't run

- Guest no longer runs in kernel mode (Ring 0)
 - parts that require kernel privileges won't run
- hypervisor (VMM) changes binaries of guest-OS on the fly

- Guest no longer runs in kernel mode (Ring 0)
 - parts that require kernel privileges won't run
- hypervisor (VMM) changes binaries of guest-OS on the fly
- allows supporting any OS

- Guest no longer runs in kernel mode (Ring 0)
 - parts that require kernel privileges won't run
- hypervisor (VMM) changes binaries of guest-OS on the fly
- allows supporting any OS
 - no need to change source

- Guest no longer runs in kernel mode (Ring 0)
 - parts that require kernel privileges won't run
- hypervisor (VMM) changes binaries of guest-OS on the fly
- allows supporting any OS
 - no need to change source
- high performance penalty

• First full x86 virtualization

- First full x86 virtualization
- hypervisor continuously reads program code before it is executed (prescan)

14

- First full x86 virtualization
- hypervisor continuously reads program code before it is executed (prescan)
- looking for relevant commands

- First full x86 virtualization
- hypervisor continuously reads program code before it is executed (prescan)
- looking for relevant commands
 - change of system state

- First full x86 virtualization
- hypervisor continuously reads program code before it is executed (prescan)
- looking for relevant commands
 - change of system state
 - commands depending on CPU state

- First full x86 virtualization
- hypervisor continuously reads program code before it is executed (prescan)
- looking for relevant commands
 - change of system state
 - commands depending on CPU state
- sets breakpoint and lets OS run

• Diverse problems were to be solved when virtualizing on IA-32:

- Diverse problems were to be solved when virtualizing on IA-32:
 - Ring Problems

- Diverse problems were to be solved when virtualizing on IA-32:
 - Ring Problems
 - Address Space Compression

- Diverse problems were to be solved when virtualizing on IA-32:
 - Ring Problems
 - Address Space Compression
 - Non-Faulting Access to Priv. State

- Diverse problems were to be solved when virtualizing on IA-32:
 - Ring Problems
 - Address Space Compression
 - Non-Faulting Access to Priv. State
 - SYSENTER / SYSEXIT

- Diverse problems were to be solved when virtualizing on IA-32:
 - Ring Problems
 - Address Space Compression
 - Non-Faulting Access to Priv. State
 - SYSENTER / SYSEXIT
 - Interrupt Virtualization

- Diverse problems were to be solved when virtualizing on IA-32:
 - Ring Problems
 - Address Space Compression
 - Non-Faulting Access to Priv. State
 - SYSENTER / SYSEXIT
 - Interrupt Virtualization
 - Hidden States

• usually: application run in ring 3, kernel in ring 0

- usually: application run in ring 3, kernel in ring 0
- ullet guest may not run in ring 0

- usually: application run in ring 3, kernel in ring 0
- guest may not run in ring 0
- ring depriviledging needed: guest must run in ring ¿ 0

- usually: application run in ring 3, kernel in ring 0
- guest may not run in ring 0
- ring depriviledging needed: guest must run in ring ¿ 0
 - ullet most often 1 or 3

• guest has to run in a ring it has not been developed for

- guest has to run in a ring it has not been developed for
- certain instructions contain privilege level in result (e.g. PUSH CS)

- guest has to run in a ring it has not been developed for
- certain instructions contain privilege level in result (e.g. PUSH CS)
- guest OS can find out ring it is running in

- guest has to run in a ring it has not been developed for
- certain instructions contain privilege level in result (e.g. PUSH CS)
- guest OS can find out ring it is running in
- may result in diverse problems

Address Space Compression

• Guest expects to have full address space available

Address Space Compression

- Guest expects to have full address space available
- hypervisor requires part of address space

- Guest expects to have full address space available
- hypervisor requires part of address space
 - control structures for switching between guest and hypervisor

- Guest expects to have full address space available
- hypervisor requires part of address space
 - control structures for switching between guest and hypervisor
- Access to these areas not allowed for guest. Invokes switch to hypervisor who has to emulate these accesses

• unprivileged software may not access certain elements of the CPU state

- unprivileged software may not access certain elements of the CPU state
- access by guest results in fault: hypervisor can emulate instructions

- unprivileged software may not access certain elements of the CPU state
- access by guest results in fault: hypervisor can emulate instructions
- IA-32 possesses instructions that do not induce a fault:

- unprivileged software may not access certain elements of the CPU state
- access by guest results in fault: hypervisor can emulate instructions
- IA-32 possesses instructions that do not induce a fault:
 - \bullet Registers GDTR, IDTR, LDTR and TR are only modifiable in ring 0

19

- unprivileged software may not access certain elements of the CPU state
- access by guest results in fault: hypervisor can emulate instructions
- IA-32 possesses instructions that do not induce a fault:
 - Registers GDTR, IDTR, LDTR and TR are only modifiable in ring 0
 - can be executed in any ring without fault (without function)

• special commands for fast syscalls

SYSENTER / SYSEXIT

- special commands for fast syscalls
- SYSENTER always switches to ring 0

SYSENTER / SYSEXIT

- special commands for fast syscalls
- SYSENTER always switches to ring 0
- SYSEXIT can only be executed in ring 0

- special commands for fast syscalls
- SYSENTER always switches to ring 0
- SYSEXIT can only be executed in ring 0
- ring 1 thus is problematic

- special commands for fast syscalls
- SYSENTER always switches to ring 0
- SYSEXIT can only be executed in ring 0
- ring 1 thus is problematic
 - \bullet SYSENTER switches to hypervisor \to has to emulate

- special commands for fast syscalls
- SYSENTER always switches to ring 0
- SYSEXIT can only be executed in ring 0
- ring 1 thus is problematic
 - ullet SYSENTER switches to hypervisor o has to emulate
 - ullet SYSEXIT switches to hypervisor o has to emulate

• interrupts can be masked (so they do not occur if not welcome)

Interrupt Virtualization

- interrupts can be masked (so they do not occur if not welcome)
- controlled by IF-flag in EFLAGS-Register

21

- interrupts can be masked (so they do not occur if not welcome)
- controlled by IF-flag in EFLAGS-Register
- Interrupts managed by VM though

21

- interrupts can be masked (so they do not occur if not welcome)
- controlled by IF-flag in EFLAGS-Register
- Interrupts managed by VM though
- ullet change of IF o fault to hypervisor

- interrupts can be masked (so they do not occur if not welcome)
- controlled by IF-flag in EFLAGS-Register
- Interrupts managed by VM though
- ullet change of IF o fault to hypervisor
- $\bullet\,$ OS do this quite often \to performance problem

- interrupts can be masked (so they do not occur if not welcome)
- controlled by IF-flag in EFLAGS-Register
- Interrupts managed by VM though
- ullet change of IF o fault to hypervisor
- ullet OS do this quite often o performance problem
- forwarding of virtual interrupts must consider IF

hidden state information

www.tugraz.at

• Not all state-information accessible via registers

- Not all state-information accessible via registers
- cannot be saved and restored when switching between VMs

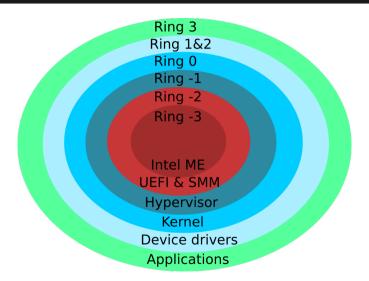
• Two new operating modes:

- Two new operating modes:
 - VMX root operation

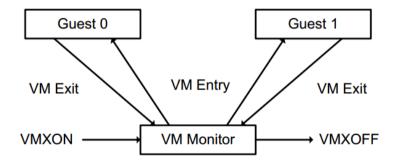
- Two new operating modes:
 - VMX root operation
 - for hypervisor

- Two new operating modes:
 - VMX root operation
 - for hypervisor
 - VMX non-root operation

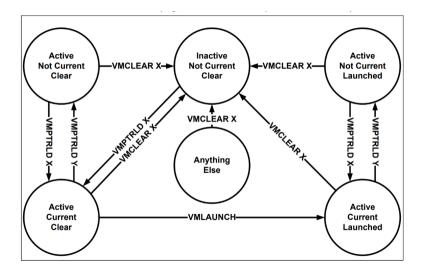
- Two new operating modes:
 - VMX root operation
 - for hypervisor
 - VMX non-root operation
 - controlled by hypervisor


- Two new operating modes:
 - VMX root operation
 - for hypervisor
 - VMX non-root operation
 - controlled by hypervisor
 - supports VMs

- Two new operating modes:
 - VMX root operation
 - for hypervisor
 - VMX non-root operation
 - controlled by hypervisor
 - supports VMs
- Both modes have ring 0-3


- Two new operating modes:
 - VMX root operation
 - for hypervisor
 - VMX non-root operation
 - controlled by hypervisor
 - supports VMs
- Both modes have ring 0-3
- guest can run in ring 0

- Two new operating modes:
 - VMX root operation
 - for hypervisor
 - VMX non-root operation
 - controlled by hypervisor
 - supports VMs
- Both modes have ring 0-3
- guest can run in ring 0
- hypervisor said to be running in "ring -1"


Rings on Intel

VMM Operation

VMM Transitions

ullet VM entry: root operation o non-root operation

- VM entry: root operation \rightarrow non-root operation
- ullet VM exit: non-root operation o root operation

- VM entry: root operation \rightarrow non-root operation
- ullet VM exit: non-root operation o root operation
- VMCS: Virtual Machine Control Structure

- VM entry: root operation \rightarrow non-root operation
- ullet VM exit: non-root operation o root operation
- VMCS: Virtual Machine Control Structure
 - Guest-state-area

- VM entry: root operation \rightarrow non-root operation
- ullet VM exit: non-root operation o root operation
- VMCS: Virtual Machine Control Structure
 - Guest-state-area
 - Host-state-area

- VM entry: root operation → non-root operation
- ullet VM exit: non-root operation o root operation
- VMCS: Virtual Machine Control Structure
 - Guest-state-area
 - Host-state-area
- Entry/Exit loads/safes information using the proper area

• Contains elements comprising the state of the virtual CPU of a VMCS

- Contains elements comprising the state of the virtual CPU of a VMCS
- VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)

- Contains elements comprising the state of the virtual CPU of a VMCS
- VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)
- GSA contains fields for these registers

- Contains elements comprising the state of the virtual CPU of a VMCS
- VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)
- GSA contains fields for these registers
- GSA contains fields for other information not readable via registers

- Contains elements comprising the state of the virtual CPU of a VMCS
- VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)
- GSA contains fields for these registers
- GSA contains fields for other information not readable via registers
 - e.g. interuptability state

Natural-Width fields.
16-bits fields.

CopyLeft 2017, @Noteworthy (Intel Manuel of July 2017)

32-bits fields.

32-bits fields.64-bits fields.

GUEST STATE AREA

CR0	CR3						CR4			
DR7										
RSP	RIP RFLAGS						AGS			
CS	Selector	В	Base Address Segment Limit					Access Right		
SS	Selector	В	ase Ad	Address Segment Limit				Access Right		
DS	Selector	В	Base Address Segme			gment Limit			Access Right	
ES	Selector	В	ase Ad	dress	Se	gmen	nt Limit		Access Right	
FS	Selector	В	ase Ad	dress	Se	gmen	gment Limit		Access Right	
GS	Selector	В	ase Ad	dress	Se	gment Limit			Access Right	
LDTR	Selector	В	Base Address Seg				gment Limit		Access Right	
TR	Selector	В	Base Address Segment Limit Access					Access Right		
GDTR	Selector	В	ase Ad	dress	Segment Limit Access R				Access Right	
IDTR	Selector	В	ase Ad	dress	Segment Limit Acces			Access Right		
IA32_DEBUGCTL	IA32_SYS	SENTER_CS	IA	A32_SYSEN	NTER_ESP IA32_SYSENTER_EIP					
_IA32_PERF_GLOBAL_CT	RL IA3	2_PAT	IA32_EFER IA32_BNDCFGS						BNDCFGS	
SMBASE										
Activity state	Activity state Interruptibility state									
Pending debug exceptions										
VMCS link pointer										
VMX-preemption timer value										
Page-directory-pointer-table entries PDPTE0 PDPTE1					E1		PDPTE2 PDPTE		PDPTE3	

Guest interrupt status PML index

11031 STATE AREA								
CRO		CR3	CR4					
	RSP	RIP						
CS		Selector	Selector					
SS		Selector	Selector					
DS	Selector							
ES	Selector							
FS	Selector	Selector Base Address						
GS	Selector Base Address							

IA32_SYSENTER_ESP

IA32 PAT

Base Address

IA32_SYSENTER_EIP

IA32 EFER

Base Address

Base Address

TR

GDTR

IDTR

IA32 SYSENTER CS

IA32 PERF GLOBAL CTRL

Selector

HOST STATE AREA

• Addressed using physical addresses

- Addressed using physical addresses
- not part of guest address space

- Addressed using physical addresses
- not part of guest address space
- hypervisor may run in different address space as guest (CR3 part of state)

29

- Addressed using physical addresses
- not part of guest address space
- hypervisor may run in different address space as guest (CR3 part of state)
- VM-exits leave detailed information on reason for exit in VMCS

- Addressed using physical addresses
- not part of guest address space
- hypervisor may run in different address space as guest (CR3 part of state)
- VM-exits leave detailed information on reason for exit in VMCS
 - exit reason

- Addressed using physical addresses
- not part of guest address space
- hypervisor may run in different address space as guest (CR3 part of state)
- VM-exits leave detailed information on reason for exit in VMCS
 - exit reason
 - exit qualification

	Save debug controls	Host ad	dress space size	Load IA32_PERF_GLOBAL_CTRL			
VM-Exit Controls	Acknowledge interrupt on exit	Sav	e IA32_PAT	Load IA32_PAT	32_PAT Save IA3	ave IA32_EFER	Load IA32_EFER
	Save VMX preemption timer val	Clear I	A32_BNDCFGS	Conceal VM exits from Intel PT			
/M-Exit Controls	VM-exit MSR-store count			VM-exit MSR-st	ore	address	

its from Intel PT for MSRs VM-exit MSR-load count VM-exit MSR-load address

VM-FXIT CONTROL FIFLDS

VM-EXIT INFORMATION FIELDS

Basic VM-Exit Exit reason

Information

Guest-linear address

VM Exits Due to Instruction Execution

VM Exits Due to Vectored Events VM Exits That Occur During Event Delivery

I/O RCX

IDT-vectoring information

VM-exit interruption information

VM-exit instruction length

VM-instruction error field

I/O RSI

I/O RDI

VM-exit interruption error code IDT-vectoring error code

VM-exit instruction information

Exit qualification

Guest-physical address

I/O RIP

www.tugraz.at

• Example: MOV CR

www.tugraz.at

• Example: MOV CR

• Exit reason: "control register access"

30

• Example: MOV CR

• Exit reason: "control register access"

• Exit qualification:

- Example: MOV CR
- Exit reason: "control register access"
- Exit qualification:
 - which CR

30

- Example: MOV CR
- Exit reason: "control register access"
- Exit qualification:
 - which CR
 - direction (Rx \rightarrow CR or CR \rightarrow Rx)

- Example: MOV CR
- Exit reason: "control register access"
- Exit qualification:
 - which CR
 - direction (Rx \rightarrow CR or CR \rightarrow Rx)
 - register used

CONTROL FIELDS										
Pin-Based VM-	External-interrupt exiting				NM	l exiting	3	Virtual NMIs		
Execution Controls	Activate VMX-preemption timer					Process posted interrupts				
		Interrupt-wi	ndow exitir	ng		Use TSC offsetting				
Primary processor-	H	ILT exiting	INVL	LPG ex	kiting	MWAIT exiting			RDPMC exiting	
based	RE	RDTSC exiting CR3-load			xiting	CR3-store exiting			CR8-load exiting	
VM-execution	CR8	CR8-store exiting Use TPR			adow	NMI-window exiting			MOV-DR exiting	
controls	Uncond	Inconditional I/O exiting Use I/O			maps	Monitor trap flag			Use MSR bitmaps	
		MONITOR exiting	g		PAUS	SE exiting Act			ate secondary controls	
	Virtualize APIC accesses		Enable EP		PT	Descriptor-table		exiting	Enable RDTSCP	
Secondary processor-based VM-execution controls	Virtual	ze x2APIC mode	Enable VPI		PID	WBINVD exit		ing	Unrestricted guest	
	APIC-register virtualization				Virtual-interrupt delivery			PAUSE-loop exiting		
	RDRAND exiting Er			nable INVPCID Enable		able VM fund	ctions	VMCS shadowing		
	Enable ENCLS exiting RD			EED ex	xiting	ng Enable PML EPT-violation #\			EPT-violation #VE	
CONTROLS	Conceal VMX non-root operation from				ntel PT		Enable XSAVES/XRSTORS			
	Mode-based execute control for EPT				PT	Use TSC scaling				
Exception Bitmap I/O			I/O-Bi	I/O-Bitmap Addresses				TSC-offset		
Guest/Host Masks fo	Guest/Host Masks for CRO Guest/Host		lasks for CR4 Read			Shadows for CRO Re			d Shadows for CR4	
CR3-target value 0	CR	3-target value 1	CR3-ta	arget v	value 2	alue 2 CR3-		ue 3	CR3-target count	
	APIC-access addres		ress	ess Vi		tual-APIC address			TPR threshold	
APIC Virtualization	EO	EOI-exit bitmap 0 EOI-ex		xit bit	t bitmap 1 EOI-e		OI-exit bitma	ap 2	EOI-exit bitmap 3	
	Posted-interrupt notification vec				tor	Posted-interrupt descriptor address			scriptor address	
Read bitmap for low	o for low MSRs Read bitmap for high MSR:		Rs	Write bit	map for low MSRs		Write bitmap for low MSRs			
Executive-VMCS Pointer Extended			l-Page	-Table Poi	able Pointer Virtual-Processor Iden			essor Identifier		
PLE_Gap		PLE_Window	Vindow VM-function of			VMREAD bitmap VMWRIT			VMWRITE bitmap	
ENCLS-exiting bitmap					PML address					
Virtualization-exception information address			EPTP index				XSS-exiting bitmap			

The next step (≈ 2005):

• Virtualization Hardware Extensions for Intel and AMD

The next step (≈ 2005):

- Virtualization Hardware Extensions for Intel and AMD
- $\rightarrow\,$ substantially lower overheads for VMs

The next step (\approx 2005):

- Virtualization Hardware Extensions for Intel and AMD
- $\,\rightarrow\,$ substantially lower overheads for VMs
- \rightarrow better isolation

The next step (≈ 2005):

- Virtualization Hardware Extensions for Intel and AMD
- ightarrow substantially lower overheads for VMs
- \rightarrow better isolation
- ightarrow IaaS VMs become widely used

• Support for interrupt-virtualization

- Support for interrupt-virtualization
 - VM-exit with every external interrupt (cannot be masked by guest)

32

- Support for interrupt-virtualization
 - VM-exit with every external interrupt (cannot be masked by guest)
 - VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)

- Support for interrupt-virtualization
 - VM-exit with every external interrupt (cannot be masked by guest)
 - VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)
- Support for CR0 and CR4-virtualization

- Support for interrupt-virtualization
 - VM-exit with every external interrupt (cannot be masked by guest)
 - VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)
- Support for CR0 and CR4-virtualization
 - VM-exit with any change of these registers

- Support for interrupt-virtualization
 - VM-exit with every external interrupt (cannot be masked by guest)
 - VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)
- Support for CR0 and CR4-virtualization
 - VM-exit with any change of these registers
 - can be set on which bits this shall happen

• Address Space Compression

- Address Space Compression
 - change of address space with any switch guest/hypervisor

- Address Space Compression
 - change of address space with any switch guest/hypervisor
 - guest owns full virtual address space

- Address Space Compression
 - change of address space with any switch guest/hypervisor
 - guest owns full virtual address space
- Ring Problems, SYSENTER/SYSEXIT

- Address Space Compression
 - change of address space with any switch guest/hypervisor
 - guest owns full virtual address space
- Ring Problems, SYSENTER/SYSEXIT
 - Guest can now run in ring 0

• Nonfaulting Access to Privileged State

- Nonfaulting Access to Privileged State
 - access raise fault into hypervisor

- Nonfaulting Access to Privileged State
 - access raise fault into hypervisor
- Hidden State

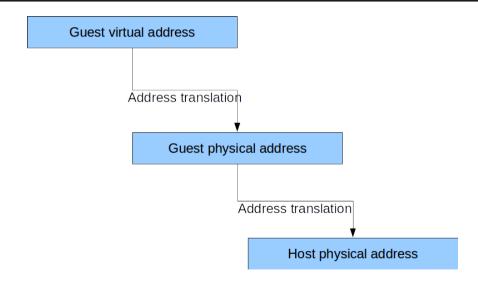
- Nonfaulting Access to Privileged State
 - access raise fault into hypervisor
- Hidden State
 - Saved into VMCS

• Hypervisor uses virtual memory

Hypervisor and Virtual Memory

www.tugraz.at

- Hypervisor uses virtual memory
- guest OS uses virtual memory

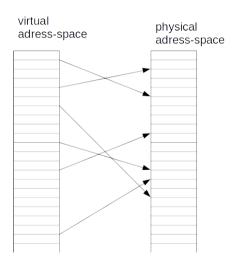

- Hypervisor uses virtual memory
- guest OS uses virtual memory
- hardware supports pagetables

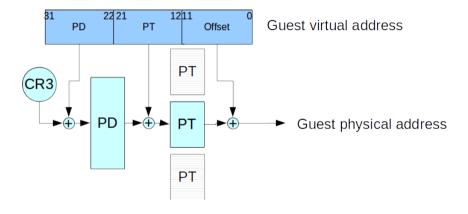
- Hypervisor uses virtual memory
- guest OS uses virtual memory
- hardware supports pagetables
- how does this work?

- Hypervisor uses virtual memory
- guest OS uses virtual memory
- hardware supports pagetables
- how does this work?
 - shadow page tables

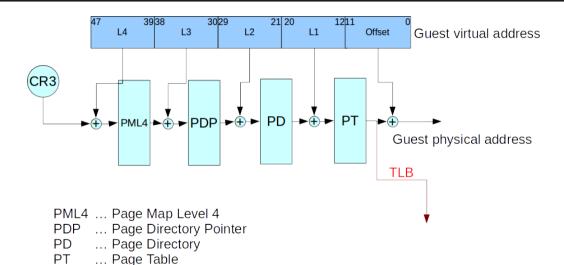
- Hypervisor uses virtual memory
- guest OS uses virtual memory
- hardware supports pagetables
- how does this work?
 - shadow page tables
 - hardware support

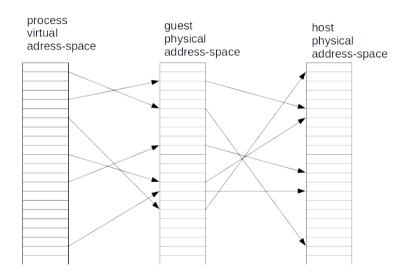
Virtual Memory

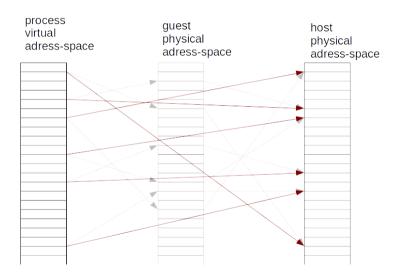

All problems in computer science can be solved by another level of indirection.

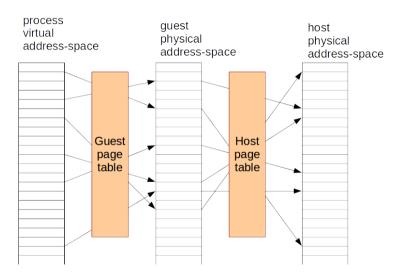

All problems in computer science can be solved by another level of indirection.

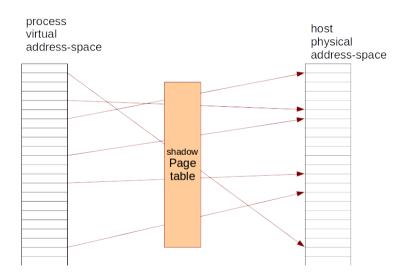
But that usually will create another problem.


David Wheeler


Paging




and in 64 bit...



Page Tables

• merges both page tables into one that the HW uses

Shadow Page Table

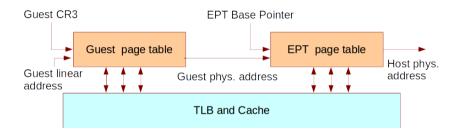
- merges both page tables into one that the HW uses
- when guest changes own page table

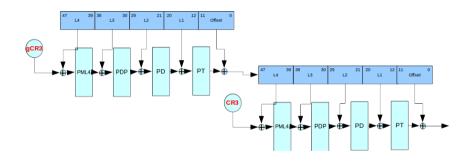
Shadow Page Table

- merges both page tables into one that the HW uses
- when guest changes own page table
 - Hypervisor has to catch access

- merges both page tables into one that the HW uses
- when guest changes own page table
 - Hypervisor has to catch access
 - update shadow page table

when HW changes shadow page table

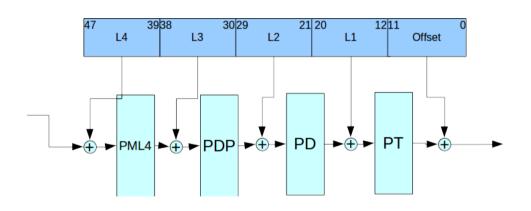

- when HW changes shadow page table
- update guest PT

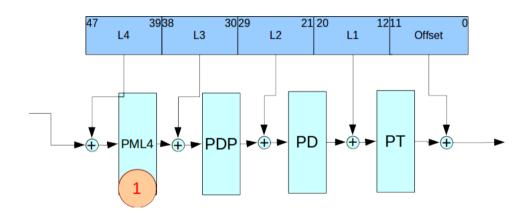

- when HW changes shadow page table
- update guest PT
 - expensive!

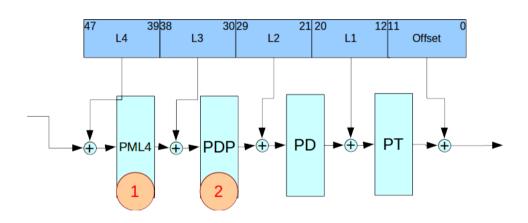
- when HW changes shadow page table
- update guest PT
 - expensive!
 - page faults caught by hypervisor

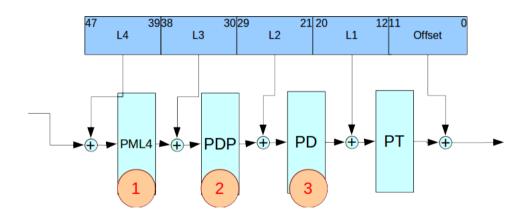
- when HW changes shadow page table
- update guest PT
 - expensive!
 - page faults caught by hypervisor
 - must run through guest PTs

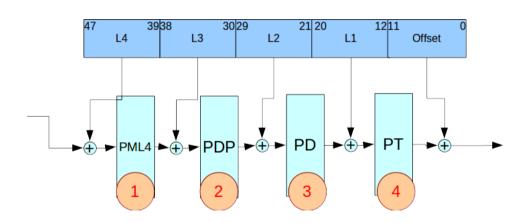
- when HW changes shadow page table
- update guest PT
 - expensive!
 - page faults caught by hypervisor
 - must run through guest PTs
 - must emulate accessed and modified bits for guest

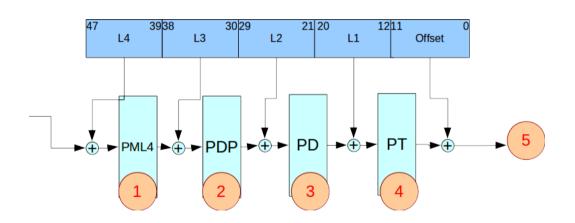


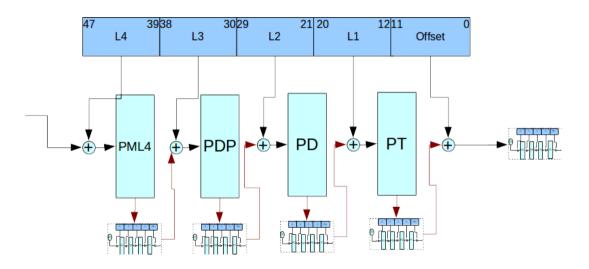



"guest page walk"


• lots of memory accesses....


- lots of memory accesses....
- but how many exactly?





And Combined

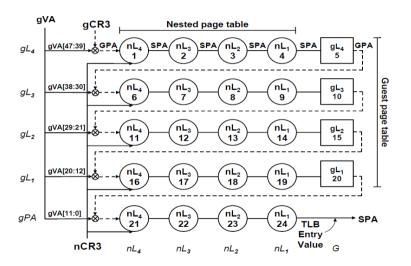
max. number of memory accesses per address translation

• 5 on guest level

... and combined ...

www.tugraz.at

max. number of memory accesses per address translation


- 5 on guest level
- each induces 5 on host level

... and combined ...

www.tugraz.at

max. number of memory accesses per address translation

- 5 on guest level
- each induces 5 on host level
- makes 25!

Performance

• depending on application: 3.9-4.6 times slower

Performance

• depending on application: 3.9-4.6 times slower

• but: TLB

www.tugraz.at

• EPT only used if VM active

- EPT only used if VM active
- Translations tagged in TLB with EPT-basepointer

- EPT only used if VM active
- Translations tagged in TLB with EPT-basepointer
 - differentiate TLB-entries of different VMs

- EPT only used if VM active
- Translations tagged in TLB with EPT-basepointer
 - differentiate TLB-entries of different VMs
 - TLB-flush per guest possible

- EPT only used if VM active
- Translations tagged in TLB with EPT-basepointer
 - differentiate TLB-entries of different VMs
 - TLB-flush per guest possible
- VPID: virtual processor ID

- EPT only used if VM active
- Translations tagged in TLB with EPT-basepointer
 - differentiate TLB-entries of different VMs
 - TLB-flush per guest possible
- VPID: virtual processor ID
 - unique value for each VM

- EPT only used if VM active
- Translations tagged in TLB with EPT-basepointer
 - differentiate TLB-entries of different VMs
 - TLB-flush per guest possible
- VPID: virtual processor ID
 - unique value for each VM
 - \bullet translations tagged in TLB using VPID

S A EPT EPT Reserved Address of EPT PML4 table Rsvd. S / PWL - PS	EPTP ³
Reserved Address of EPT PML4 table Rsvd. S A EPT EPT S / PWL-PS D 1 MT	EPIP
Ignored Rsvd. Address of EPT page-directory-pointer table $\begin{vmatrix} g X & $	PML4E present
S V Ignored Q Q Q	PML4E not presen
S V Ign S Ignored Rsvd. Physical address of 1 GB page Reserved Ig X D A 1 P EPT X W R	PDPTE 1GB page
Ignored Rsvd. Address of EPT page directory $\begin{bmatrix} g \ X \ g \ n, \ U \ n, \ A \end{bmatrix}$ Rsvd. $\begin{bmatrix} X \ W \ R \end{bmatrix}$	PDPTE page director
S V Ignored E	PDTPE not presen
S S S Ignored Rsvd. Physical address Reserved Ig X D A 1 P EPT X W R S S S S S S S S S	PDE: 2MB page
Ignored Rsvd. Address of EPT page table $\begin{vmatrix} g & X & g \\ n, U & n, A & \underline{0} \end{vmatrix}$ Rsvd. $\begin{vmatrix} X & w \\ x & w \end{vmatrix}$ Rsvd. $\begin{vmatrix} X & w$	PDE: page table
S V Ignored Ω	PDE: not presen
S g P S Ignored Rsvd. Physical address of 4KB page Ig X D A I P EPT KW R	PTE: 4KB page
S V Ignored Q Q Q	PTE: not presen

Figure 28-1. Formats of EPTP and EPT Paging-Structure Entries

1. Enable VMX via CR4

- 1. Enable VMX via CR4
- 2. Allocate a VMXON region and use the VMXON instruction

- 1. Enable VMX via CR4
- 2. Allocate a VMXON region and use the VMXON instruction
- 3. Allocate an MSR Bitmap region (we don't want a trap for all MSRs)

- 1. Enable VMX via CR4
- 2. Allocate a VMXON region and use the VMXON instruction
- 3. Allocate an MSR Bitmap region (we don't want a trap for all MSRs)
- 4. Use VMCLEAR instruction

- 1. Enable VMX via CR4
- 2. Allocate a ${\tt VMXON}$ region and use the ${\tt VMXON}$ instruction
- 3. Allocate an MSR Bitmap region (we don't want a trap for all MSRs)
- 4. Use VMCLEAR instruction
- 5. Execute VMPTRLD to make a VMCS the "current VMCS"

- 1. Enable VMX via CR4
- 2. Allocate a VMXON region and use the VMXON instruction
- 3. Allocate an MSR Bitmap region (we don't want a trap for all MSRs)
- 4. Use VMCLEAR instruction
- 5. Execute VMPTRLD to make a VMCS the "current VMCS"
- 6. Allocate a VMCS region and set up the VMCS (using ${\tt VMWRITES})$

- 1. Enable VMX via CR4
- 2. Allocate a VMXON region and use the VMXON instruction
- 3. Allocate an MSR Bitmap region (we don't want a trap for all MSRs)
- 4. Use VMCLEAR instruction
- 5. Execute VMPTRLD to make a VMCS the "current VMCS"
- 6. Allocate a VMCS region and set up the VMCS (using VMWRITES)
- 7. Use the VMLAUNCH

1. user needs help for some operations (e.g., HW interaction)

- 1. user needs help for some operations (e.g., HW interaction)
- \rightarrow can use a syscall!

- 1. user needs help for some operations (e.g., HW interaction)
- \rightarrow can use a syscall!
- 2. What about VMs?

- 1. user needs help for some operations (e.g., HW interaction)
- \rightarrow can use a syscall!
- 2. What about VMs?
- 3. Same concept different level:

- 1. user needs help for some operations (e.g., HW interaction)
- \rightarrow can use a syscall!
- 2. What about VMs?
- 3. Same concept different level:
- ightarrow Hypercalls!

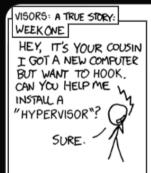
- 1. user needs help for some operations (e.g., HW interaction)
- \rightarrow can use a syscall!
- 2. What about VMs?
- 3. Same concept different level:
- ightarrow Hypercalls!

- 1. user needs help for some operations (e.g., HW interaction)
- \rightarrow can use a syscall!
- 2. What about VMs?
- 3. Same concept different level:
- \rightarrow Hypercalls! via the ${\tt vmcall}$ instruction

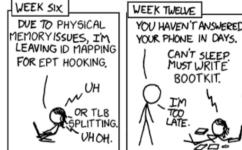
• Full virtualization often not needed

- Full virtualization often not needed
- Serverless / Edge Computing (it's still a form of cloud computing)

- Full virtualization often not needed
- Serverless / Edge Computing (it's still a form of cloud computing)
- ullet Virtualization is not for free o why not skip it and just use OS level isolation?


- Full virtualization often not needed
- Serverless / Edge Computing (it's still a form of cloud computing)
- Virtualization is not for free \rightarrow why not skip it and just use OS level isolation?
- ullet Context switches between processes are expensive o why not skip process isolation and just use language-level isolation?

Cloud Operating Systems \rightarrow Hardware-assisted virtualization



Talk to your kids about hypervisors...before someone else does

PARENTS: TALK TO YOUR
KIDS ABOUT HYPERVISORS...
BEFORE SOMEBOOD ELSE DOES.

60

• Seminar-style

CloudOS: the first time

www.tugraz.at

- Seminar-style
- You code

CloudOS: the first time

www.tugraz.at

- Seminar-style
- You code
- You plan

CloudOS: the first time

www.tugraz.at

- Seminar-style
- You code
- You plan
- You present

60

Team

Daniel Gruss

Fabian Rauscher

• 28 participants \rightarrow 7 teams with each 4 participants

- ullet 28 participants ightarrow 7 teams with each 4 participants
- ightarrow send me your registration until Friday March 19

- 28 participants \rightarrow 7 teams with each 4 participants
- ightarrow send me your registration until Friday March 19
- 10 Points Basic SWEB Hypervisor

- ullet 28 participants o 7 teams with each 4 participants
- ightarrow send me your registration until Friday March 19
- 10 Points Basic SWEB Hypervisor
- 10 Points Advanced Hypervisor Feature of your choice

- 28 participants \rightarrow 7 teams with each 4 participants
- ightarrow send me your registration until Friday March 19
- 10 Points Basic SWEB Hypervisor
- 10 Points Advanced Hypervisor Feature of your choice
- 10 Points Talk on Special Topic

- 28 participants \rightarrow 7 teams with each 4 participants
- ightarrow send me your registration until Friday March 19
- 10 Points Basic SWEB Hypervisor
- 10 Points Advanced Hypervisor Feature of your choice
- 10 Points Talk on Special Topic
- points based on exercise interview

• 26 of 30 points \rightarrow 1

- 26 of 30 points \rightarrow 1
- 22 of 30 points \rightarrow 2

Grading

- 26 of 30 points \rightarrow 1
- 22 of 30 points \rightarrow 2
- 18 of 30 points \rightarrow 3

Grading

- 26 of 30 points \rightarrow 1
- 22 of 30 points \rightarrow 2
- 18 of 30 points \rightarrow 3
- 15 of 30 points \rightarrow 4

• Implementation Deadline 11.6.

- Implementation Deadline 11.6.
- VMX works

- Implementation Deadline 11.6.
- VMX works
- EPT works

- Implementation Deadline 11.6.
- VMX works
- EPT works
- a virtualized SWEB boots and is usable

• Propose an advanced hypervisor feature you will support

- Propose an advanced hypervisor feature you will support
- 280 characters description

- Propose an advanced hypervisor feature you will support
- 280 characters description
- Feature Plan Deadline 7.5.

- Propose an advanced hypervisor feature you will support
- 280 characters description
- Feature Plan Deadline 7.5.
- What? Anything you like

- Propose an advanced hypervisor feature you will support
- 280 characters description
- Feature Plan Deadline 7.5.
- What? Anything you like
 - running multiple VMs

- Propose an advanced hypervisor feature you will support
- 280 characters description
- Feature Plan Deadline 7.5.
- What? Anything you like
 - running multiple VMs
 - page deduplication across VMs

- Propose an advanced hypervisor feature you will support
- 280 characters description
- Feature Plan Deadline 7.5.
- What? Anything you like
 - running multiple VMs
 - page deduplication across VMs
 - EPT hooking

- Propose an advanced hypervisor feature you will support
- 280 characters description
- Feature Plan Deadline 7.5.
- What? Anything you like
 - running multiple VMs
 - page deduplication across VMs
 - EPT hooking
 - shadow page tables

- Propose an advanced hypervisor feature you will support
- 280 characters description
- Feature Plan Deadline 7.5.
- What? Anything you like
 - running multiple VMs
 - page deduplication across VMs
 - EPT hooking
 - shadow page tables
 - virtualize the running system to hook (and alter) instructions

Daniel Gruss

- Propose an advanced hypervisor feature you will support
- 280 characters description
- Feature Plan Deadline 7.5.
- What? Anything you like
 - running multiple VMs
 - page deduplication across VMs
 - EPT hooking
 - shadow page tables
 - virtualize the running system to hook (and alter) instructions
 - virtualization of any hardware devices (many options)

- Propose an advanced hypervisor feature you will support
- 280 characters description
- Feature Plan Deadline 7.5.
- What? Anything you like
 - running multiple VMs
 - page deduplication across VMs
 - EPT hooking
 - shadow page tables
 - virtualize the running system to hook (and alter) instructions
 - virtualization of any hardware devices (many options)
 - nested virtualization

- Propose an advanced hypervisor feature you will support
- 280 characters description
- Feature Plan Deadline 7.5.
- What? Anything you like
 - running multiple VMs
 - page deduplication across VMs
 - EPT hooking
 - shadow page tables
 - virtualize the running system to hook (and alter) instructions
 - virtualization of any hardware devices (many options)
 - nested virtualization
- Implementation Deadline 11.6.

• 12.4., 26.4., 10.5.

- 12.4., 26.4., 10.5.
- 2 talks each

- 12.4., 26.4., 10.5.
- 2 talks each
- 20-40 minutes (=5-10 minutes per participant) + Q&A

66 Daniel Gruss

- 12.4., 26.4., 10.5.
- 2 talks each
- 20-40 minutes (=5-10 minutes per participant) + Q&A
- Register until 29.3. with talk topic and date

www.tugraz.at

• 15.03. Introduction Lecture

www.tugraz.at

- 15.03. Introduction Lecture
- 19.03. **Deadline**: Group Registration

www.tugraz.at

- 15.03. Introduction Lecture
- 19.03. Deadline: Group Registration
- 22.03. Hypervisor Implementation Basics

- 15.03. Introduction Lecture
- 19.03. **Deadline**: Group Registration
- 22.03. Hypervisor Implementation Basics
- 29.03. Deadline: Talk Registration

- 15.03. Introduction Lecture
- 19.03. **Deadline**: Group Registration
- 22.03. Hypervisor Implementation Basics
- 29.03. Deadline: Talk Registration
- 12.04. Student Presentations

- 15.03. Introduction Lecture
- 19.03. **Deadline**: Group Registration
- 22.03. Hypervisor Implementation Basics
- 29.03. Deadline: Talk Registration
- 12.04. Student Presentations
- 26.04. Student Presentations

- 15.03. Introduction Lecture
- 19.03. **Deadline**: Group Registration
- 22.03. Hypervisor Implementation Basics
- 29.03. **Deadline**: Talk Registration
- 12.04. Student Presentations
- 26.04. Student Presentations
- 07.05. **Deadline**: Feature Plan Deadline

- 15.03. Introduction Lecture
- 19.03. **Deadline**: Group Registration
- 22.03. Hypervisor Implementation Basics
- 29.03. **Deadline**: Talk Registration
- 12.04. Student Presentations
- 26.04. Student Presentations
- 07.05. **Deadline**: Feature Plan Deadline
- 10.05. Student Presentations

- 15.03. Introduction Lecture
- 19.03. **Deadline**: Group Registration
- 22.03. Hypervisor Implementation Basics
- 29.03. **Deadline**: Talk Registration
- 12.04. Student Presentations
- 26.04. Student Presentations
- 07.05. **Deadline**: Feature Plan Deadline
- 10.05. Student Presentations
- 11.06. **Deadline**: Implementation Deadline

- 15.03. Introduction Lecture
- 19.03. **Deadline**: Group Registration
- 22.03. Hypervisor Implementation Basics
- 29.03. **Deadline**: Talk Registration
- 12.04. Student Presentations
- 26.04. Student Presentations
- 07.05. **Deadline**: Feature Plan Deadline
- 10.05. Student Presentations
- 11.06. **Deadline**: Implementation Deadline
- 14.06. Exercise Interviews