
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2020/2021

Stefan Mangard, www.iaik.tugraz.at

Chapter 13: Virtual Memory

Note on Material

The slides of this chapter are based on material from Prof. Onur Mutlu, ETH Zurich

Changes that have been made:
• Textual updates have been performed
• Material been combined from multiple slide decks
• Changes of the sequence and the amount of content has been done

Original source: https://safari.ethz.ch/digitaltechnik/spring2019/doku.php?id=schedule

The corresponding material is available under the following license:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Memory (Programmer’s View)

Ideal Memory

• Zero access time (latency)

• Infinite capacity

• Zero cost

• Infinite bandwidth (to support multiple accesses in parallel)

A System with Physical Memory Only

• Examples:
• early PCs

• many embedded systems

CPU’s load or store addresses used directly to access memory

CPU

0:
1:

N-1:

Memory

Physical
Addresses

• Programmer needs to manage physical memory space
• Inconvenient & hard
• Harder when you have multiple processes

• Difficult to support code and data relocation
• Addresses are directly specified in the program

• Difficult to support multiple processes
• Protection and isolation between multiple processes
• Sharing of physical memory space

• Difficult to support data/code sharing across processes

Difficulties of Direct Physical Addressing

Abstraction: Virtual vs. Physical Memory
• Programmer sees virtual memory

• Can assume the memory is “infinite”

• Reality: Physical memory size is much smaller than what the programmer
assumes

• The system (system software + hardware, cooperatively) maps virtual
memory addresses to physical memory
• The system automatically manages the physical memory space transparently to the

programmer

+ Programmer does not need to know the physical size of memory nor manage it → A small physical
memory can appear as a huge one to the programmer → Life is easier for the programmer

-- More complex system software and architecture

Benefits of Virtual Memory

• Programmer does not deal with physical addresses

• Each process has its own mapping from virtual→physical addresses

• Enables
• Code and data to be located anywhere in physical memory

(relocation)

• Isolation/separation of code and data of different processes in physical
memory
(protection and isolation)

• Code and data sharing between multiple processes
(sharing)

Basic Mechanism

• Indirection (in addressing)

• Address generated by each instruction in a program is a “virtual
address”
• i.e., it is not the physical address used to address main memory

• An “address translation” mechanism maps this address to a
“physical address”
• Address translation mechanism can be implemented in hardware and

software together

A System with Virtual Memory (Page based)

• Address Translation: The hardware converts virtual addresses into physical
addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Virtual Pages, Physical Frames
• Virtual address space divided into pages

• Physical address space divided into frames

• A virtual page is mapped to
• A physical frame, if the page is in physical memory
• A location in disk, otherwise

• If an accessed virtual page is not in memory, but on disk
• Virtual memory system brings the page into a physical frame and adjusts

the mapping → this is called demand paging

• Page table is the table that stores the mapping of virtual pages to
physical frames

Physical Memory as a Cache

• In other words…

• Physical memory is a cache for pages stored on disk
• In fact, it is a fully associative cache in modern systems (a

virtual page can potentially be mapped to any physical frame)

• Similar caching issues exist as we have covered earlier:
• Placement: where and how to place/find a page in cache?

• Replacement: what page to remove to make room in cache?

• Granularity of management: large, small, uniform pages?

• Write policy: what do we do about writes? Write back?

Cache/Virtual Memory Analogues

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number

Virtual Memory Definitions

• Page size: amount of memory transferred from hard disk to DRAM at
once

• Address translation: determining the physical address from the virtual
address

• Page table: lookup table used to translate virtual addresses to physical
addresses (and find where the associated data is)

Virtual and Physical Addresses

• Most accesses hit in physical memory

• But programs see the large capacity of virtual memory

16

Address Translation

Virtual Page Number

Physical Page Number

Virtual Memory Example

• System:
• Virtual memory size: 2 GB = 231 bytes

• Physical memory size: 128 MB = 227 bytes

• Page size: 4 KB = 212 bytes

Virtual Memory Example

• System:
• Virtual memory size: 2 GB = 231 bytes

• Physical memory size: 128 MB = 227 bytes

• Page size: 4 KB = 212 bytes

• Organization:
• Virtual address: 31 bits

• Physical address: 27 bits

• Page offset: 12 bits

• # Virtual pages = 231/212 = 219 (VPN = 19 bits)

• # Physical pages = 227/212 = 215 (PPN = 15 bits)

How Do We Translate Addresses?

• Page table
• Has entry for each virtual page

• Each page table entry has:

• Valid bit: whether the virtual page is located in physical memory (if not, it
must be fetched from the hard disk)

• Physical page number: where the virtual page is located in physical memory

• (Replacement policy, dirty bits)

Page Table Address Translation Example

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual

Address
0x00002 47C

Hit

Physical

Page Number

1219

15 12

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

Physical

Address
0x7FFF 47C

Page Table is Indexed
with the VPN

Page Table provides the physical
page number (PPN)

Page Table is located
at physical memory
address specified by
the PTBR (Page Table
Base Register)

Page offset bits do not change
during translation

• What is the physical address of virtual
address 0x5F20?

• We first need to find the page table
entry containing the translation for
the corresponding VPN

• Look up the PTE at the address
• PTBR + VPN*PTE-size

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical

Page Number

15

P
a
g
e
 T

a
b
le

Page Table Address Translation Example 1

• What is the physical address
of virtual address 0x5F20?

• VPN = 5

• Entry 5 in page table indicates
VPN 5 is in physical page 1

• Physical address is 0x1F20

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual

Address
0x00005 F20

Hit

Physical

Page Number

1219

15 12

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

Physical

Address
0x0001 F20

Page Table Address Translation Example 1

• What is the physical
address of virtual
address 0x73E0?

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical

Page Number

15

P
a
g
e
 T

a
b
le

Page Table Address Translation Example 2

• What is the physical address of
virtual address 0x73E0?

• VPN = 7

• Entry 7 in page table is invalid, so
the page is not in physical memory

• The virtual page must be swapped
into physical memory from disk

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual

Address
0x00007 3E0

Hit

Physical

Page Number

19

15

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

Page Table Address Translation Example 2

Issue: Page Table Size

◼Suppose 64-bit VA and 40-bit PA, how large is the page table?
◼ 252 entries x ~4 bytes  254 bytes

and that is for just one process!

and the process may not be using the entire VM space!

VPN Page Offset

page
table

concat PA

64-bit

12-bit52-bit

28-bit 40-bit

Page Table Challenges

• Challenge 1: Page table is large
• at least part of it needs to be located in physical memory
• solution: multi-level (hierarchical) page tables

• Challenge 2: Each instruction fetch or load/store requires
at least two memory accesses:
1. one for address translation (page table read)
2. one to access data with the physical address (after translation)

• Two memory accesses to service an instruction fetch or
load/store greatly degrades execution time
• Unless we are clever… → speed up the translation…

Translation Lookaside Buffer (TLB)

• Idea: Cache the page table entries (PTEs) in a hardware
structure in the processor to speed up address
translation

• Translation lookaside buffer (TLB)

• Small cache of most recently used translations (PTEs)

• Reduces number of memory accesses required for most
instruction fetches and loads/stores to only one

Translation Lookaside Buffer (TLB)

• Page table accesses have a lot of temporal locality
• Data accesses have temporal and spatial locality
• Large page size (say 4KB, 8KB, or even 1-2GB)
• Consecutive instructions and loads/stores are likely to

access same page

• TLB
• Small: accessed in ~ 1 cycle
• Typically 16 - 512 entries
• High associativity
• > 95-99 % hit rates typical (depends on workload)
• Reduces number of memory accesses for most instruction

fetches and loads/stores to only one

Example Two-Entry TLB

Hit
1

V

=

01

15 15

15

=

Hit
1Hit

0

Hit

19 19

19

Virtual

Page Number

Physical

Page Number

Entry 1

1 0x7FFFD 0x0000 1 0x00002 0x7FFF

Virtual

Address
0x00002 47C

1219

Virtual

Page Number

Page

Offset

V

Virtual

Page Number

Physical

Page Number

Entry 0

12
Physical

Address 0x7FFF 47C

TLB

Virtual Memory Support
and Examples

Supporting Virtual Memory

• Virtual memory requires both HW+SW support
• Page Table is in memory
• Can be cached in special hardware structures called Translation

Lookaside Buffers (TLBs)

• The hardware component is called the MMU (memory
management unit)
• Includes Page Table Base Register(s), TLBs, page walkers

• It is the job of the software to leverage the MMU to
• Populate page tables, decide what to replace in physical memory
• Change the Page Table Register on context switch (to use the

running thread’s page table)
• Handle page faults and ensure correct mapping

What Is in a Page Table Entry (PTE)?
• Page table is the “tag store” for the physical memory data store

• A mapping table between virtual memory and physical memory

• PTE is the “tag store entry” for a virtual page in memory
• Need a valid bit → to indicate validity/presence in physical memory

• Need tag bits (physical frame number - PFN) → to support translation

• Need bits to support replacement

• Need a dirty bit to support “write back caching”

• Need protection bits to enable access control and protection

Address Translation: Page Hit

Address Translation: Page Fault

Page Fault (“A Miss in Physical Memory”)

• If a page is not in physical memory but disk
• Page table entry indicates virtual page not in memory

• Access to such a page triggers a page fault exception

• OS trap handler invoked to move data from disk into memory
• Other processes can continue executing

• OS has full control over placement

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault

Disk

Servicing a Page Fault

• (1) Processor signals controller
• Read block of length P starting at

disk address X and store starting
at memory address Y

• (2) Read occurs
• Direct Memory Access (DMA)
• Under control of I/O controller

• (3) Controller signals
completion
• Interrupt processor
• OS resumes suspended process

Disk

Memory-I/O bus

Processor

Cache

Memory

I/O

controller

Reg

(2) DMA

Transfer

(1) Initiate Block Read

(3) Read

Done

Page Replacement Algorithms

• If physical memory is full (i.e., list of free physical pages
is empty), which physical frame to replace on a page
fault?

• True LRU is expensive

• Modern systems use approximations of LRU
• E.g., the CLOCK algorithm

