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Note on Material

The slides of this chapter are based on material from Prof. Onur Mutlu, ETH Zurich

Changes that have been made:
• Textual updates have been performed
• Material been combined from multiple slide decks
• Changes of the sequence and the amount of content has been done

Original source: https://safari.ethz.ch/digitaltechnik/spring2019/doku.php?id=schedule

The corresponding material is available under the following license: 
https://creativecommons.org/licenses/by-nc-sa/4.0/



Memory (Programmer’s View) 



Ideal Memory

• Zero access time (latency)

• Infinite capacity

• Zero cost

• Infinite bandwidth (to support multiple accesses in parallel)



A System with Physical Memory Only

• Examples:
• early PCs

• many embedded systems

CPU’s load or store addresses used directly to access memory
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• Programmer needs to manage physical memory space
• Inconvenient & hard
• Harder when you have multiple processes

• Difficult to support code and data relocation
• Addresses are directly specified in the program

• Difficult to support multiple processes
• Protection and isolation between multiple processes
• Sharing of physical memory space

• Difficult to support data/code sharing across processes

Difficulties of Direct Physical Addressing



Abstraction: Virtual vs. Physical Memory
• Programmer sees virtual memory

• Can assume the memory is “infinite”

• Reality: Physical memory size is much smaller than what the programmer 
assumes

• The system (system software + hardware, cooperatively) maps virtual 
memory addresses to physical memory
• The system automatically manages the physical memory space transparently to the 

programmer

+ Programmer does not need to know the physical size of memory nor manage it → A small physical 
memory can appear as a huge one to the programmer → Life is easier for the programmer

-- More complex system software and architecture



Benefits of Virtual Memory

• Programmer does not deal with physical addresses

• Each process has its own mapping from virtual→physical addresses

• Enables
• Code and data to be located anywhere in physical memory

(relocation)

• Isolation/separation of code and data of different processes in physical 
memory
(protection and isolation)

• Code and data sharing between multiple processes
(sharing)



Basic Mechanism

• Indirection (in addressing)

• Address generated by each instruction in a program is a “virtual 
address”
• i.e., it is not the physical address used to address main memory

• An “address translation” mechanism maps this address to a 
“physical address”
• Address translation mechanism can be implemented in hardware and 

software together



A System with Virtual Memory (Page based)

• Address Translation: The hardware converts virtual addresses into physical 
addresses via an OS-managed lookup table (page table)
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Virtual Pages, Physical Frames
• Virtual address space divided into pages

• Physical address space divided into frames

• A virtual page is mapped to
• A physical frame, if the page is in physical memory
• A location in disk, otherwise

• If an accessed virtual page is not in memory, but on disk
• Virtual memory system brings the page into a physical frame and adjusts 

the mapping → this is called demand paging

• Page table is the table that stores the mapping of virtual pages to 
physical frames



Physical Memory as a Cache

• In other words…

• Physical memory is a cache for pages stored on disk
• In fact, it is a fully associative cache in modern systems (a 

virtual page can potentially be mapped to any physical frame)

• Similar caching issues exist as we have covered earlier:
• Placement: where and how to place/find a page in cache?

• Replacement: what page to remove to make room in cache?

• Granularity of management: large, small, uniform pages?

• Write policy: what do we do about writes? Write back?



Cache/Virtual Memory Analogues

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number



Virtual Memory Definitions

• Page size: amount of memory transferred from hard disk to DRAM at 
once

• Address translation: determining the physical address from the virtual 
address

• Page table: lookup table used to translate virtual addresses to physical 
addresses (and find where the associated data is)



Virtual and Physical Addresses

• Most accesses hit in physical memory

• But programs see the large capacity of virtual memory

16



Address Translation

Virtual Page Number

Physical Page Number



Virtual Memory Example

• System:
• Virtual memory size: 2 GB = 231 bytes

• Physical memory size: 128 MB = 227 bytes

• Page size: 4 KB = 212 bytes



Virtual Memory Example

• System:
• Virtual memory size: 2 GB = 231 bytes

• Physical memory size: 128 MB = 227 bytes

• Page size: 4 KB = 212 bytes

• Organization:
• Virtual address: 31 bits

• Physical address: 27 bits

• Page offset: 12 bits

• # Virtual pages = 231/212 = 219 (VPN = 19 bits)

• # Physical pages = 227/212 = 215 (PPN = 15 bits)



How Do We Translate Addresses?

• Page table
• Has entry for each virtual page

• Each page table entry has:

• Valid bit: whether the virtual page is located in physical memory (if not, it 
must be fetched from the hard disk)

• Physical page number: where the virtual page is located in physical memory

• (Replacement policy, dirty bits)



Page Table Address Translation Example
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• What is the physical address of virtual 
address 0x5F20? 

• We first need to find the page table 
entry containing the translation for 
the corresponding VPN

• Look up the PTE at the address
• PTBR + VPN*PTE-size
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Page Table Address Translation Example 1



• What is the physical address 
of virtual address 0x5F20? 

• VPN = 5

• Entry 5 in page table indicates 
VPN 5 is in physical page 1

• Physical address is 0x1F20
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• What is the physical 
address of virtual 
address 0x73E0? 
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• What is the physical address of 
virtual address 0x73E0? 

• VPN = 7

• Entry 7 in page table is invalid, so 
the page is not in physical memory

• The virtual page must be swapped 
into physical memory from disk
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Issue: Page Table Size

◼Suppose 64-bit VA and 40-bit PA, how large is the page table?     
◼ 252 entries x ~4 bytes  254 bytes

and that is for just one process!

and the process may not be using the entire VM space!
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Page Table Challenges

• Challenge 1: Page table is large
• at least part of it needs to be located in physical memory
• solution: multi-level (hierarchical) page tables

• Challenge 2: Each instruction fetch or load/store requires 
at least two memory accesses:
1. one for address translation (page table read)
2. one to access data with the physical address (after translation)

• Two memory accesses to service an instruction fetch or 
load/store greatly degrades execution time
• Unless we are clever… → speed up the translation…



Translation Lookaside Buffer (TLB)

• Idea: Cache the page table entries (PTEs) in a hardware 
structure in the processor to speed up address 
translation

• Translation lookaside buffer (TLB)

• Small cache of most recently used translations (PTEs)

• Reduces number of memory accesses required for most
instruction fetches and loads/stores to only one



Translation Lookaside Buffer (TLB)

• Page table accesses have a lot of temporal locality
• Data accesses have temporal and spatial locality
• Large page size (say 4KB, 8KB, or even 1-2GB)
• Consecutive instructions and loads/stores are likely to 

access same page

• TLB
• Small: accessed in ~ 1 cycle
• Typically 16 - 512 entries
• High associativity
• > 95-99 % hit rates typical (depends on workload)
• Reduces number of memory accesses for most instruction 

fetches and loads/stores to only one



Example Two-Entry TLB

Hit
1

V

=

01

15 15

15

=

Hit
1Hit

0

Hit

19 19

19

Virtual

Page Number

Physical

Page Number

Entry 1

1    0x7FFFD     0x0000     1    0x00002     0x7FFF

Virtual

Address
0x00002       47C

1219

Virtual

Page Number

Page

Offset

V

Virtual

Page Number

Physical

Page Number

Entry 0

12
Physical

Address 0x7FFF       47C

TLB



Virtual Memory Support
and Examples



Supporting Virtual Memory

• Virtual memory requires both HW+SW support 
• Page Table is in memory
• Can be cached in special hardware structures called Translation 

Lookaside Buffers (TLBs)

• The hardware component is called the MMU (memory 
management unit)
• Includes Page Table Base Register(s), TLBs, page walkers

• It is the job of the software to leverage the MMU to
• Populate page tables, decide what to replace in physical memory 
• Change the Page Table Register on context switch (to use the 

running thread’s page table)
• Handle page faults and ensure correct mapping



What Is in a Page Table Entry (PTE)? 
• Page table is the “tag store” for the physical memory data store

• A mapping table between virtual memory and physical memory

• PTE is the “tag store entry” for a virtual page in memory
• Need a valid bit → to indicate validity/presence in physical memory

• Need tag bits (physical frame number - PFN) → to support translation

• Need bits to support replacement 

• Need a dirty bit to support “write back caching”

• Need protection bits to enable access control and protection



Address Translation: Page Hit



Address Translation: Page Fault



Page Fault (“A Miss in Physical Memory”)

• If a page is not in physical memory but disk
• Page table entry indicates virtual page not in memory

• Access to such a page triggers a page fault exception

• OS trap handler invoked to move data from disk into memory
• Other processes can continue executing

• OS has full control over placement
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Disk

Servicing a Page Fault

• (1) Processor signals controller
• Read block of length P starting at 

disk address X and store starting 
at memory address Y

• (2) Read occurs
• Direct Memory Access (DMA)
• Under control of I/O controller

• (3) Controller signals 
completion
• Interrupt processor
• OS resumes suspended process 
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Page Replacement Algorithms

• If physical memory is full (i.e., list of free physical pages 
is empty), which physical frame to replace on a page 
fault?

• True LRU is expensive

• Modern systems use approximations of LRU
• E.g., the CLOCK algorithm


