
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2020/2021

Stefan Mangard, www.iaik.tugraz.at

Chapter 11: Polling and Interrupts



What We Covered So Far …

Logic Gates

Combinational Circuits

Finite State Machines

Instructions, Instructions Sets

CPUs

Assembler

Stack, Calling Conventions

C Programming

Link and Network Layer 

Network and Transport Layer

Application Layer

2

• We skipped many details at the 
different abstraction layers

• We now focus again on CPUs

• First topic: How do to handle I/O 
efficiently at the CPU level?



Von Neumann Model

3

Processing Unit

Control Unit

Bus
System

Output
(Monitor, Printer, 
Network, Disc, …)

Input
(Keyboard, Disc, 

Network, …)

CPU
Memory

Register
File

Program 
Counter

Instruction 
Register

ALU



Our Example I/O

www.iaik.tugraz.at

4

• The I/O interface that we discussed so 
far is idealized debug interface (data is 
always valid)

• In practice there is the following 
challenge: 

• The CPU executes one instruction after the 
other.

• How should it know when the input is 
valid? Is it valid always (in every clock 
cycle)? 



Example

• Assume an input port of a computer is set to a value 1 in one clock 
cycle

• It is still 1 in the next clock cycle

• Does this mean this is the “same” 1 or does this mean that there is a 
“second” 1? 

• How should the computer know?

www.iaik.tugraz.at

5



We Need to Add a Flag 

www.iaik.tugraz.at

6
	

	

You've Got MailNo Mail for You



Synchronization with Control Signals

• On real communication channels, data is not always ready

• We need synchronization with control signals

• There exist different protocols and standards.
• Serial protocols: RS232, SPI, USB, SATA, . . .
• Parallel protocols: PATA/IDE, IEEE 1284 (Printer), . . .

• We use a simple parallel interface with few control signals to illustrate this
• 8-bit data port
• Simple valid/ready flow-control
• Registers (memory mapped)

• 0x7D0 (control register)
• 0x7D4 (data register)

www.iaik.tugraz.at

7



Implementing an Interface With a Control 
Register

www.iaik.tugraz.at

8

Receiver 

(The Sofware)
The Sender



Implementing an Interface With a Control 
Register

www.iaik.tugraz.at

9

Receiver 

(The Sofware)
The Sender

(1) Sender waits until valid bit is cleared (set to 0)

(2) Sender sets the data value

(3) Sender sets the valid bit

Note:
Sender and Receiver 

can operate at 
different speeds

Example of a basic protocol:

(4) Receiver (the software) waits until valid bit is set

(5) Receiver reads the data

(6) Receiver clears the valid bit



Polling Using a Control Register by the sender

www.iaik.tugraz.at

10

Pseudoinstruction for 

beq t1,zero, POLL_PARIN



Control Signals

• There is a wide range of options for implementing communication 
between entities (FSMs, software, humans, …) of with different 
speeds

• However, in all cases, there needs to be signals to ensure that
• The sender knows that the resource (bus, register, …) is available

• The receiver knows that there is valid input

• The sender knows that the receiver has received the signal (acknowledge) 

www.iaik.tugraz.at

11



Communication via a Slow Communication 
Interface

• Polling is highly inefficient: the CPU is stuck in a loop until e.g. 
• an I/O peripheral sets a ready signal
• a timer has reached a certain value
• the user has pressed a key
• ….

• Alternative
• CPU keeps executing some useful code in the first place
• We use concept of interrupts to react to “unexpected” events
• Basic idea: Instead of waiting for an event, we execute useful code and then let an 

event trigger a redirection of the instruction stream 

www.iaik.tugraz.at

12



How to handle unexpected external events?

• We add an input signal to the CPU called “interrupt”.

• An external source can activate this input signal “interrupt”.

• After executing an instruction, the CPU checks for the value of this 
input signal “interrupt” before it fetches the next instruction.

• If the signal “interrupt” is active, the next instruction to be executed 
is the first instruction of the “interrupt-service routine”.

• After “handling” the interrupt by executing the interrupt-service 
routine, the CPU returns to the interrupted program. 

13



Interrupts in RISC-V

• Hardware Aspects
• External interrupt is an input signal to the processor core
• Control & Status registers (CSRs) for interrupt configuration (e.g. mie, mtvec, mip, …)
• Additional instructions for interrupt handling (mret)
• Dedicated interrupt controllers on bigger processors

• Software Aspects
• When an interrupt occurs, the program execution is interrupted
• Special functions have to be provided to handle interrupts → Interrupt Service 

Routines (ISR)
• Software needs to configure and enable interrupts
• Software has to preserve the interrupted context

→ Interrupt entry points are typically written in assembly

www.iaik.tugraz.at

14



Control & Status Registers (CSRs) in RISC-V

• We so far only considered memory-mapped peripherals whose 
registers can be accessed via standard load and store instructions 

• RISC-V also features dedicated so called “Control & Status Registers”
• The ISA allows addressing 4096 registers (32 bit each)

• Dedicated instructions allow to read and write these registers: CSRRW, CSRRS, 
CSRRC, CSRRWI, CSRRSI, CSRRCI

www.iaik.tugraz.at

15



The Interrupt Service Routine (ISR)

• Entering the ISR
• Upon an interrupt, the processor 

• jumps to a location in memory specified by the mtvec CSR.
• automatically stores the previous location into mepc CSR.

• Executing the ISR
• The ISR can execute arbitrary code; However, the processor context (program 

counter, register) needs to have exactly the same values when returning to the 
interrupted code → “From the view of the interrupted program, the execution after 
the interrupt continues as if nothing had happened” 

• Leaving the ISR
• Upon the execution of the mret instruction, the processor

• returns to the original location stored in the mepc CSR

www.iaik.tugraz.at

16



Finding the Interrupt Service Routine

• Two approaches are common:
• Single entrypoint for all interrupts.

• the ISR has to determine what caused the interrupt and then handles the corresponding interrupt

• Multiple entrypoints for different interrupts organized in a table (vectored interrupts)
• A table defines the entry point for different causes of interrupts
• E.g. each interrupt vector table entry has 4 bytes

• Interrupt cause 0 leads to a jump to mtvec
• Interrupt cause 1 leads to a jump to mtvec+4 
• Interrupt cause 2 leads to a jump to mtvec+8
• …

→just enough space to place a single jal instruction to the actual ISR handler code at 
each entry location

• RISC-V permits both approaches

www.iaik.tugraz.at

17



Connecting Interrupt Sources to Interrupt 
Service Routines

www.iaik.tugraz.at

18

Source 0
(e.g. keyboard)

Source 1
(e.g. timer)

Source 2
…

…
…

There are many options for connecting 
interrupt sources to interrupt service routines

Code handling 
source 0

Code handling 
source 1

Code handling 
source 2

Code handling 
source …



Connecting Interrupt Sources to Interrupt 
Service Routines (one Interrupt)

www.iaik.tugraz.at

19

Source 0
(e.g. keyboard)

Source 1
(e.g. timer)

Source 2
…

…
…

Interrupt 0 Entry point 0

• The ISR at the entry point needs to check the 
status of the interrupt sources in order to find 
out which code shall be executed to handle the 
interrupt

Code handling 
source 0

Code handling 
source 1

Code handling 
source 2

Code handling 
source …



Connecting Interrupt Sources to Interrupt 
Service Routines (one entry point)

www.iaik.tugraz.at

20

Source 0
(e.g. keyboard)

Source 1
(e.g. timer)

Source 2
…

…
…

Interrupt 0 Entry point 0

• The ISR at the entry 
point based on the 
interrupt number 
determines the code 
that shall be 
executed to handle 
the interrupt

Code handling 
source 0

Code handling 
source 1

Code handling 
source 2

Code handling 
source …

Interrupt 1 

Interrupt 2 

Interrupt 3 



Connecting Interrupt Sources to Interrupt 
Service Routines (vectored approach)

www.iaik.tugraz.at

21

Source 0
(e.g. keyboard)

Source 1
(e.g. timer)

Source 2
…

…
…

Interrupt 0 Entry point 0

• Vectored handling with different entry points for different interrupts

Code handling 
source 0

Code handling 
source 1

Code handling 
source 2

Code handling 
source …

Interrupt 1 

Interrupt 2 

Interrupt … 

Entry point 1

Entry point 2

Entry point …



Connecting Interrupt Sources to Interrupt 
Service Routines

• In practice all kinds of combinations are possible for interrupt 
handling

• There is also the option for having interrupts with different priorities

• Dedicated interrupt controllers are available on larger systems to 
handle priorities, entry points, nested interrupts, …

www.iaik.tugraz.at

22


