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Software

Hardware

The Software/Hardware Interface: Instruction Set Architecture (ISA):
• The ISA defines anything that is needed by programmers to correctly write a program for the hardware.
• In particular this includes defining, instructions, registers, data types, memory model, … 
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The Software/Hardware Interface: Instruction Set Architecture (ISA):
• The ISA defines anything that is needed by programmers to correctly write a program for the hardware.
• In particular this includes defining, instructions, registers, data types, memory model, … 

• A microarchitecture defines how the instruction set is implemented 
in a concrete processor. This includes all details from realizing the 
register file and ALU up to pipelining, out-of-order execution, …

• Note: the programmer does not need to care about the 
microarchitecture (i.e. the concrete realization of the ISA)

Software

Hardware
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The Software/Hardware Interface: Instruction Set Architecture (ISA):
• The ISA defines anything that is needed by programmers to correctly write a program for the hardware.
• In particular this includes defining, instructions, registers, data types, memory model, … 

• A microarchitecture defines how the instruction set is implemented 
in a concrete processor. This includes all details from realizing the 
register file and ALU up to pipelining, out-of-order execution, …

• Note: the programmer does not need to care about the 
microarchitecture (i.e. the concrete realization of the ISA)

Software

Hardware

• The software tool chain maps program description in all kinds 
programming languages down to machine language (i.e. 
instructions that the CPU can execute)



Micro RISC-V 
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Micro RISC-V

• Micro RISC-V is a very simple CPU that we use for our introductory 
programming examples

• Micro RISC-V implements a subset of R32I 

• Tools and code for micro RISC-V 
• Code for Micro RISC-V and examples are available in the examples-2020 repo

• Assembler: riscvasm.py 

• Simulator: riscvsim.py

www.iaik.tugraz.at

6



Micro RISC-V Overview
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Software
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.asm file

.hex file

Instruction Set 
Simulation

(“riscvsim.py”)

Verilog RTL 
Simulation
(“iverilog”)

Verilog 
Gate-Level 
Simulation

Assembler (“riscvasm.py”)

Hardware

Synthesis
(using yosys)

Physical Chip

.sv file

Placement, Routing, Chip Manufacturing
(this is part of the course “Digitial System Design”)

SW/HW Interface:
Instruction Set Architecture



Input and Output Devices
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How to 
Implement I/O?
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• We access I/O and other 
devices like memory 

→ we build memory-
mapped peripherals
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Control Unit

Bus
System

Output
(Monitor, Printer, 
Network, Disc, …)

Input
(Keyboard, Disc, 

Network, …)

CPU
Memory

Program 
Counter

Instruction 
Register

Processing Unit

Data 
RegistersALU



Memory-Mapped Peripherals and I/O

• Store and load instructions allow addressing 32-bit of memory space

• Not all the memory space that is addressable is used for actual memory

• We can split the memory space in pieces and assign a certain range to 
actual memory and other ranges to peripherals or I/O:

• Peripherals: load/store operations write to registers of state machines with 
additional functionality (Co-processors, sound, graphics, … ) 

• I/O: We implement input and output as wires connecting to our CPU
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Control Unit

Bus
System

Output
(Monitor, Printer, 
Network, Disc, …)

Input
(Keyboard, Disc, 

Network, …)

CPU
Memory

Program 
Counter

Instruction 
Register

Processing Unit

Data 
RegistersALU

The bus system takes care of routing the load/store operations to the 
correct physical device as defined by the memory ranges



Memory Map in Micro RISC-V

• In Micro RISC-V, the physical memory 
map is as follows:
• RAM is located from 0x00000000 to 

0x000007FB

• I/O is located at address 0x000007FC

• The remaining memory range is not 
connected (write has no effect; read 
returns 0)

• The physical memory map is defined for 
each device depending on size of 
memory, peripherals, etc. 
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Programming in Assembly
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Note on ASM Examples

• Run “make” to generate .hex files

• Run “make run” to assemble and run the .asm file in the current working 
directory with the RTL simulator (micro-RISCV) 

• Run “make sim” to simulate the .asm file in the current working directory 
with the python asmlib RISC-V simulator

If there are more than one asm files in the current working directory, you 
need to specify the target explicitly using “make 
run=the_asm_file_without_file_extension_suffix” (and accordingly for 
“make sim”).
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Read/Write from Memory vs. Read Write 
from I/O
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con04_adding-two-constants con06_adding-stdin-numbers



Summing Up 10 Input Values
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Loops
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Loops
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Loops
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Loops
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Loops
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Counting offsets is not a 
nice job for a programmer

→ Let the compiler do it



Symbols

• Basic idea:
• We label memory addresses 

• Each address we label is assigned a symbol (“a name”) 

• When programming, we can replace memory addresses by symbols 
to simplify the complexity of programming
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Loop Using a Label
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Variables, Having Fun With the Memory Layout
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• We can choose the 
memory layout as we like

• We can mix data and 
code

• Try it out with your own 
code



Programming in C
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Software
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.asm file

.hex file

Instruction Set 
Simulation

(“riscvsim.py”)

Verilog RTL 
Simulation
(“iverilog”)

Verilog 
Gate-Level 
Simulation

Assembler (“riscvasm.py”)

Hardware

Synthesis
(using yosys)

Physical Chip

.v file

Placement, Routing, Chip Manufacturing
(this is part of the course “Digitial System Design”)

.c file

Compiler



Program in C

while (1) {
scanf(“%x”, &a);
if (a==0) break;
printf(“%x”, a);

}

29
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“Simplification”: While → If, goto

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;

while (1) {
scanf(“%x”, &a);
if (a==0) break;
printf(“%x”, a);

}

30
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From C to RISCV assembly language

L0

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;

31
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From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;

Copy value from 
location 0x7fc 
to CPU register x1.

32

www.iaik.tugraz.at



From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)

SW x1, 0x7fc(x0)

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;
Store (= copy) value
in CPU register x1

to address 0x7fc

33
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From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0)
JAL x0,L0

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;

If value in CPU register x1 is equal to 0,
Then goto label L1. Else continue with
the statement after the if-statement. 

34
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From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;

This statement stands for
a unconditional “goto”. 

35
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From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;

The execution of the instruction EBREAK
halts the CPU simulation. 

36
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From assembly language 
to machine language

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK

0x00:
0x04:
0x08:
0x0C:
0x10:

TOY starts executing code at address 0x00. 
Every machine instruction needs one word in memory.

37
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Labels are “symbolic addresses”

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK 

0x00:
0x04:
0x08:
0x0C:
0x10:

The label “L0” is a symbolic name for the memory location with address 0x00.
Likewise, the label “L1” is a symbolic name for the memory location with address 0x10.

38
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L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK

0x00: 0x7F C0 20 83
0x04:
0x08:
0x0C:
0x10:

39
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40

0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63 
0x08:
0x0C:
0x10:

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK
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0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63 
0x08: 0x 7E 10 2E 23
0x0C:
0x10:

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK
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0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63 
0x08: 0x 7E 10 2E 23
0x0C: 0x FF 5F F0 6F
0x10:

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK
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0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63 
0x08: 0x 7E 10 2E 23
0x0C: 0x FF 5F F0 6F
0x10: 0x 00 10 00 73

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK
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The Machine Program

44

0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63 
0x08: 0x 7E 10 2E 23
0x0C: 0x FF 5F F0 6F
0x10: 0x 00 10 00 73
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The Machine Program in Binary Notation

0x00: 0111_1111_1100_0000_0010_0000_1000_0011
0x14: 0000_0000_0000_0000_1000_0110_0110_0011
0x08: 0111_1110_0001_0000_0010_1110_0010_0011
0x0C: 1111_1111_0101_1111_1111_0000_0110_1111
0x10: 0000_0000_0001_0000_0000_0000_0111_0011

For reasons of readability,
we use hexadecimal
notation.

In memory we always only have 
binary patterns.

45

0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63 
0x08: 0x 7E 10 2E 23
0x0C: 0x FF 5F F0 6F
0x10: 0x 00 10 00 73
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Let’s do a More Complex Example

• The program sums up 4 
numbers and write the sum to 
stdout

• We translate the program from 
C to ASM step by step

• See examples repo for each 
step
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Important Steps for the Transformation from 
C to ASM
• Transform all For/While loops into conditional goto statements (if + goto label)

• Resolve complex conditional statements and computational statements by 
using additional temporary variables → ASM instructions can only handle two 
operands

• Ensure the correct handling of the else branch when resolving if statements to 
(if + goto label) statements

• Make pointer arithmetic of e.g. arrays explicit and only use char* (because we 
have byte-level addressing in RISC-V ASM)
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Function Calls, Calling Convention
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Motivation

• The C to ASM translation we have done so far was limited
• No function calls

• Only global variables – no local variables in functions

• For real-world programs we want to partition our program into 
functions with local variables
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49



Functions Calls

• Basic Idea:
• partitioning of code into reusable functions

• functions can call other functions arbitrarily 
(nested function calls, recursive function 
calls)

• Interface:
• the function takes input arguments

• the function provides a return value as 
output
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Realizing Function Calls and Returns

• A function call is not a simple branch 
instruction

• Whenever there is a function call, we also  
need to store the return address
• foo2 needs to know whether to return to foo0 or 

foo1

• The return address is a mandatory parameter to 
every function 

www.iaik.tugraz.at
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Realizing Function Calls and Returns on RISC-V

• RISC-V has two instructions to perform a “jump 
and link”

• JAL (Jump and Link): JAL rd, offset
• Jump relative to current PC

• The jump destination is PC+offset

• Upon the jump (PC+4) is stored in register rd

• JALR (Jump and Link Register): JALR rd, rs, offset
• Jump to address (register content from rs) + offset

• Upon the jump (PC+4) is stored in register rd
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Example

• See con06_function_call
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Problem: Nested Subroutine Calls

• JAL and JALR need a register for storing the return address

• We could use a different register for each function call. However, we 
would quickly run out of registers

→We need a data structure in memory to take care of this.
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A Stack

• Stack characteristics:
• Two operations:

• “PUSH”: places an element on the stack

• “POP”: receives an element from the stack

• The stack is a FILO (first in, last out) data structure

• The stack typically “grows” from high to low addresses

• The stack is a contiguous section in memory

• The “stack pointer” (sp) “points” to the “top of the stack” (TOS)
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Push Value 42
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Pop Value from Top of Stack
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Implementing a Stack with RISC-V

• Initialize a stack pointer
• Set starting point 

• Push value
• Expand stack by 4

• Copy value from register to top of stack

• Pop value
• Copy value from top of stack to destination register

• decrease stack by 4

www.iaik.tugraz.at
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Implementing a Stack with RISC-V

• Initialize a stack pointer
• Set starting point 

• Push value
• Expand stack by 4

• Copy value from register to top of stack

• Pop value
• Copy value from top of stack to destination register

• decrease stack by 4
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push_pop.asm



Register Usage in Subroutines

• We can use a stack to store return addresses

• In fact, the stack can be used as a storage for any register

• Assume you want to use register x1, but it currently stores another value that is needed later 
on
• Push x1 to the stack
• Use x1 
• Restore x1 by popping the content from the stack 
→This is called “register spilling”

Idea: 

→We can use the stack to store and restore register states when entering/exiting function calls

→Every function can use the CPU registers as needed
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Calling Convention

• There are many different ways how to handle the stacking of registers 
when calling a subroutine

• There is a calling convention for each platform that defines the 
relationship between the caller (the part of the programming doing a 
call to a subroutine) and the callee (the subroutine that is called). It 
defines:
• How arguments are passed between caller and callee

• How values are returned from the callee to the caller

• Who takes care of the stacking of which registers
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RISC-V Registers Summary

• Saved by Caller:
• ra (return address)
• a0 - a1 (arguments/return values)
• a2 – a7 (arguments)
• t0 - t6 (temp. registers)

• Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)

In this lecture we do not use gp
and tp
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From the RISC-V Instruction Set Manual (riscv.org):

. 



The View of the Caller
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. 

Dear Callee,

Use these registers however you like –
I do not care about the content. 
Your arguments are in a0 – a7.
Give me your return value in a0 (32 bit 
case) or in a0 and a1 (64 bit value)

Dear Callee,

I want these registers back with 
exactly the same content as I passed 
them to you.  In case you need 
them, these are registers are to be 
saved and restored by you.

Summary

• Saved by Caller:
• ra (return address)
• a0 - a1 (arguments/return values)
• a2 – a7 (arguments)
• t0 - t6 (temp. registers)

• Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)



Switching from HW to SW View

• All subsequent assembler examples will be 
written using the software ABI conventions →
we use no x.. registers any more

• In hardware this does not change anything – it 
is just the naming
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Saved by Caller:
• ra (return address)
• a0 - a7 (arguments)
• t0 - t6 (temp. registers)

Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)



Code Parts of a Subroutine

• Important code parts for the handling of 
registers, local variables and arguments are

• Function Prolog (“Set up”) – the first instructions of a 
subroutine

• Neighborhood of a Nested Call (before and after call)  

• Epilog (“Clean up”) – the last instructions of a 
subroutine
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Saved by Caller:
• ra (return address)
• a0 - a7 (arguments)
• t0 - t6 (temp. registers)

Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)



Examples

• Check the examples repo and look at the code in the directory 
stack_according_to_abi

• Compile and understand the following examples
• 01_direct_return.asm

• 02_nested_function_call.asm

• 03_nested_call_with_argument.asm

• 04_recursive_call_with_arguments.asm
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Frame Pointer

• If there are too many arguments to fit them into the registers, the additional 
parameters are passed via the stack

• In order to facilitate the access to these arguments, we introduce the 
framepointer

• The framepointer stores the value of the stack pointer upon function entry

• This allows to have a fixed offset for variables throughout the function, e.g.
• FP: points to the first argument on the stack
• FP + 4: points to the second argument on the stack
• FP - 4: points to the return address pushed by the callee (if needed)

• See example 05_call_with_many_arguments.asm
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Local Variables

• Whenever a function requires local variables, these variables are also 
stored on the stack

• See example 06_local_variables_and_call_by_reference.asm
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Call by Value vs. Call by Reference

• There are two important ways of passing arguments to a function

• Call by Value
• The values of the arguments are provided in the registers a0-a7 and the stack

• Call by Reference
• Instead of values, pointers are passed to the function (they point for example 

to variables of the stack frame of the caller)

• See example 06_local_variables_and_call_by_reference.asm
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Full Stack Frame

• In case a function receives arguments via the stack, uses local variables and 
performs calls, the full stack frame looks as follows (addressed relative to 
the framepointer (fp)):

• ….
• FP + 8: third argument passed via stack
• FP + 4: second argument passed via stack 
• FP: first argument  
• FP - 4: Return address
• FP - 8: Frame pointer of caller
• FP - 12: First local variable
• FP - 16: Second local variable
• …
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Buffer Overflow

• A computer performs one instruction after the other

• If return addresses on the stack are overwritten by user input, the 
computer will jump to a target defined by the user input

• Simple buffer overflows are detected on today’s computer systems. 
However, there are many more options of how a user can attack a 
computer system. 

• See example 07_stack_buffer_overflow.asm
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Summary on Code Parts of a Subroutine

• Prolog (“Set up”) – the first instructions of a subroutine
• Stacking the return address (in case needed)
• Stacking of frame pointer of caller and initialization of FP for callee (in case needed)
• Stacking of s1-s11 (in case these registers are needed)
• Allocation of stack for local variables

• Neighborhood of a Nested Call (before and after call)  
• Preparation of arguments in registers and on stack (if needed) for the subroutine 
• Stacking and restoring of registers a0-a7, t0-t7 (in case these registers are still needed in the subroutine after 

returning from the call)

• Epilog (“Clean up”) – the last instructions of a subroutine
• Restore frame pointer
• Restore return address
• Restore stack pointer
• Jump to return address
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Saved by Caller:
• ra (return address)
• a0 - a7 (arguments)
• t0 - t6 (temp. registers)

Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)


