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Notes on this Slide Set

* This part of the lecture is based on slides by Prof. Onur Mutlu (ETH
Zurich)

* The slide sequence has been changed in several aspects
* adaption to RISC-V
» Addition / deletion of slides and slide content
* Change of layout

* Original source:
https://safari.ethz.ch/digitaltechnik/spring2019/doku.php?id=schedule

[ {ec) https://creativecommons.org/licenses/by-nc-sa/4.0/
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Drawbacks of the Simple
~etch/Decode/Execute Design

* The operations that we perform in the fetch, decode and execute
stage are very different in terms of critical path

A computation and memory lookup during the execution take much more time
than the decision on which instruction to execute (decoding) = the worst-case
execution stage will define the clock frequency

e Goal: In order to build a fast design, the goal is to build a design,
where each instruction needs only as much time as it actually needs



Basic Idea of Multicycle Architectures

* Cut the operations that are needed for one instruction into more fine-
granular operations than fetch, decode, execute

* Each instruction is a multicycle instruction and takes as many cycles
as needed to perform the actions defined by the instruction
* Multiple state transitions per cycle
e Each instruction leads to a different sequence of states (longer / shorter)



igh-Level Overview (Single Cycle Datapath)
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Fetch Decode Execute Memory “Writé

(F) (D) (E) (M) Back
(WB)
T
) _— Sign ext. for loa
I\: [ te/halfwor
Read Port A > \ »| Address
)\ . .
DaIfaeglster File > AL Data
Instruction Memory
Memory Read Port B *| Data
»| Address  Instruction T
]

~ 5ign ext. for
immediat




Can We Do Beftter?

* What limitations do you see with the multi-cycle design?

* Limited concurrency

* Some hardware resources are idle during different phases of instruction
processing cycle

* “Fetch” logic is idle when an instruction is being “decoded” or “executed”
* Most of the datapath is idle when a memory access is happening



Can We Use the Idle Hardware to Improve Concurrency?

e Goal: More concurrency =2 Higher instruction throughput (i.e., more
“work” completed in one cycle)

* |dea: When an instruction is using some resources in its processing phase,
process other instructions on idle resources not needed by that
Instruction

e E.g., when an instruction is being decoded, fetch the next instruction
* E.g., when an instruction is being executed, decode another instruction

* E.g., when an instruction is accessing data memory (ld/st), execute the next
instruction

e E.g., when an instruction is writing its result into the register file, access data
memory for the next instruction



Fetch Decode Execute Memory “Writé

(F) (D) (E) (M) Back
(WB)
T
) _— Sign ext. for loa
I\: [ te/halfwor
Read Port A > \ »| Address
)\ . .
DaIfaeglster File > AL Data
Instruction Memory
Memory Read Port B *| Data
»| Address  Instruction T
]

~ 5ign ext. for
immediat

10



Pipelining



Pipelining: Basic Idea

* More systematically:
* Pipeline the execution of multiple instructions
* Analogy: “Assembly line processing” of instructions

* |dea:

* Divide the instruction processing cycle into distinct “stages” of
processing

* Ensure there are enough hardware resources to process one
instruction in each stage

* Process a different instruction in each stage

* |nstructions consecutive in program order are processed in consecutive
stages

* Benefit: Increases instruction processing throughput (1/CPI)
* Downside: Start thinking about this...



Example: Execution of Four Independent ADDs (no memory needed)

* Multi-cycle: 4 cycles per instruction

F |D | E |W

Time

* Pipelined: 4 cycles per 4 instructions (steady state)

F |D | E |W

| — -} | — \Al|

Is life always this beautiful?

F |D|E |W

Time



The Laundry Analogy
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e “place one dirty load of clothes in the washer”

v

* “when the washer is finished, place the wet load in the dryer”

* “when the dryer is finished, take out the dry load and fold”

)

* “when folding is finished, ask your roommate (??) to put the clothes away’

- steps to do a load are sequentially dependent
- no dependence between different loads
- different steps do not share resources

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry
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d on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry: In Practice
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry: In Practice

throughput restored (2 loads per hour) using 2 dryers

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



An ldeal Pipeline

* Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

* Repetition of identical operations

 The same operation is repeated on a large number of different
inputs (e.g., all laundry loads go through the same steps)

Repetition of independent operations
* No dependencies between repeated operations

Uniformly partitionable suboperations

* Processing can be evenly divided into uniform-latency
suboperations (that do not share resources)

* Fitting examples: automobile assembly line, doing laundry



|deal Pipelining
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More Realistic Pipeline: Throughput

* Nonpipelined version with delay T
BW = 1/(T+S) where S = register delay

—_— :Tps > —

» k-stage pipelined version
_ Register delay reduces throughput
BWk-Stage =1 / (T/k S ) (switching overhead between stages)
BW_. =1/ (1gatedelay+S)

T/k T/k
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More Realistic Pipeline: Cost

* Nonpipelined version with combinational cost G
Cost = G+L where L = register cost

—> » G gates "

* k-stage pipelined version
Costy ga0e = G + LK

Registers increase hardware cost

— :G/k > —»ooooooo—»G/k > —




Pipelining Instruction
Processing
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The Instruction Processing Cycle

. Instruction fetch (IF)
2. Instruction decode and
register operand fetch (ID/RF)
. Execute/Evaluate memory address (EX/AG)
. Memory operand fetch (MEM)
. Store/writeback result (WB)

o~ W



Program
execution
order

(in instructions)

Time

LW x1, 100(x0)
LW x2, 200(x0)
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Instruction Pipeline Throughput
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5-stage speedup is 4, not 5 as predicted by the ideal model. Why?
(We complete an instruction every 200ps instead of every 800ps)



Enabling Pipelined Processing: Pipeline Registers wwwiaik tugraz.at
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Plpellned Operatlon www.iaik.tugraz.at
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LW X1,100(XO) www.iaik.tugraz.at
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LW x1, 100()(0) www.iaik.tugraz.at
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Plpellned Operatlon www.iaik.tugraz.at
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llustrating Pipeline Operation: Operation View
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Illustrating Pipeline Operation: Resource View
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Note: There is the same number of control signals as in a single-cycle data path
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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Control Signals in a Pipeline

* For a given instruction
e same control signals as single-cycle, but
e control signals required at different cycles, depending on stage
—>Option 1: decode once using the same logic as single-cycle and buffer

signals until consumed
WB
Instructi ~ —
nstruction Control f M . WB L
EX[— M — - we|
IF/ID ID/EX EX/MEM MEM/WB

—Option 2: carry relevant “instruction word/field” down the pipeline and
decode locally within each or in a previous stage



Pipelined Control Signals
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelined Control Signals
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Pipelined Control Signals
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Pipelined Control Signals
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Remember: An |deal Pipeline

* Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

* Repetition of identical operations

 The same operation is repeated on a large number of different
inputs (e.g., all laundry loads go through the same steps)

* Repetition of independent operations
* No dependencies between repeated operations

Uniformly partitionable suboperations

* Processing an be evenly divided into uniform-latency suboperations
(that do not share resources)

* Fitting examples: automobile assembly line, doing laundry



Instruction Pipeline: Not An ldeal Pipeline

BMIidentical operations ... NOT!

= different instructions = not all need the same stages

Forcing different instructions to go through the same pipe stages
- external fragmentation (some pipe stages idle for some instructions)

BIindependent operations ... NOT!

=> instructions are not independent of each other
Need to detect and resolve inter-instruction dependencies to ensure the
pipeline provides correct results
- pipeline stalls (pipeline is not always moving)

BUniform suboperations ... NOT!

= different pipeline stages = not the same latency
Need to force each stage to be controlled by the same clock
- internal fragmentation (some pipe stages are too fast but all take the
same clock cycle time)



Issues in Pipeline Design

* Balancing work in pipeline stages
 How many stages and what is done in each stage

* Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

* Handling dependences
* Data

e Control
* Handling resource contention
* Handling long-latency (multi-cycle) operations

* Handling exceptions, interrupts



Causes of Pipeline Stalls

e Stall: A condition when the pipeline stops moving

* We need to stall the pipeline if either a needed resource or
data value is not available

e Resource is not available

e Resource contention (e.g. caused by long-latency (multi-cycle)
operations)

e Data is not available

* Dependences between instructions (also called “dependency” or
“hazard”)
* Data
e Control



Data Dependence Handling



Read-After-Write Dependency

s < r,opr, Read-after-Write
I < r;opr, (RAW)



RAW Dependence Handling

* Which one of the following flow dependences lead to
conflicts in the 5-stage pipeline?

addi rlr--

addi  r-k1- Q*: At

addi -l *

addi r-rl - *

addi r-rl -

addi r-rl -




Pipeline Stall: Resolving Data Dependence

Inst,
Inst,
Inst,
Inst,
Inst,

t, t, t, t; t, ts -

IF ID |[|ALU ||MEM]||WB
i |IF D [ALU_IIMEMIIWB_+
i |IF ID [|ALU ||MEM]||WB

IF ID |[|ALU [|[MEM||WB <2

IF ID [|ALU ||MEM

IF ID |[|ALU <

IF D =<

IF 2




Pipeline Stall: Resolving Data Dependence
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IF D =<

IF 2




Pipeline Stall: Resolving Data Dependence
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Pipeline Stall: Resolving Data Dependence

Inst,
Inst,
Inst,
Inst,
Inst,

t, t, t, t, t, -
IF ID |[ALU ||MEM||WB
i |IF ID [|ALU [|[MEM||WB |
i [F_Jp—]e—1—][ip  J[ALu 3
LE—E—]lE—[iF JiD <
IF 2

Stall = make the dependent instruction

wait until its source data value is available

1. stop all up-stream stages

2. drain all down-stream stages



Example of Dependence Detection

* Scoreboarding

* Each register in register file has a Valid bit associated
with it

* An instruction that is writing to the register resets the
Valid bit

* An instruction in Decode stage checks if all its source
and destination registers (in case of more complex
dependencies) are Valid

* Yes: No need to stall... No dependence
* No: Stall the instruction
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Once You Detect the Dependence in Hardware
* What do you do afterwards?

* Observation: Dependence between two instructions is
detected before the communicated data value becomes
available

e Option 1: Stall the dependent instruction right away

* Option 2: Stall the dependent instruction only when
necessary = data forwarding/bypassing

* Option 3: ...



Data Forwarding/Bypassing

* Problem: A consumer (dependent) instruction has to wait in
decode stage until the producer instruction writes its value
in the register file

* Goal: We do not want to stall the pipeline unnecessarily

* Observation: The data value needed by the consumer
instruction can be supplied directly from a later stage in the
pipeline (instead of only from the register file)

* |dea: Add additional dependence check logic and data
forwarding paths (buses) to supply the producer’s value to
the consumer right after the value is available

* Benefit: Consumer can move in the pipeline until the point
the value can be supplied = less stalling



RISC-V vs. MIPS

* Note: The following example is using the MIPS
instruction set, but the concepts equally hold for RISC-V

* In MIPS assembler, the S sign stands for a register.

Example: load word instruction

estination register
Offset
Address register

MIPS

lw $1, 100($0) lw r1, 100(r0)



RAW Data Dependence Example

One instruction writes a register (Ss0) and next instructions

read this register => read after write (RAW) dependence.
add writes into SsO in the first half of cycle 5
and reads SsO on cycle 3, obtaining the wrong value

or reads SsO on cycle 4, again obtaining the wrong value.

sub reads SsO in the second half of cycle 5, obtaining the correct

value

subsequent instructions read the correct value of SsO

add $s0,
and $tO,
or $tl,

sub $t2,

$s2,

$s0,

Ss4,

$s0,

$s3

Ssl

$s0

$s5

1

2

6

~

8

adﬂ|[

S
RF|ss3

RF

| DM Stl

DM

>

Time (cycles)

S$t2

RF




Data Forwarding

* Also called Data Bypassing

* Forward the result value to the dependent instruction
as soon as the value is available

e Basic Idea

* Data values are supplied to dependent instruction as soon as
it is available

* Instruction executes when all its operands are available



Data Forwarding
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and $t0, $s0, $sl M |2 -[RF ss1 - D#/l_ 70 RF
M $s4d ] v$t1
or $tl1, $s4, $s0 M = HI RF [ss0 oM RF
b $s0M o st2

sub $t2, $s0, $s5 M 2 RF [ss5 E_I 1&[ RE




Data Forwarding
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Stalling
lw $s0, 40($0) IM liﬂ-[m: 28 VE_VT DM 7_v$80 -

~ Trouble! -]
andv $s0M X 5 Msto
and $t0, $s0, $sl IM -[RF $s1 T RF
RF

>

Time (cycles)

) $Ss4
or $tl, $s4, $s0 M = H] RF [ss0

st1
DM RF

sub

sub $t2, $s0, $sb5 IM

$sOM 7
$t2
$s5 E—I g :l RF

* Forwarding is sufficient to resolve RAW data dependences

* but...There are cases when forwarding is not possible due to pipeline design
and instruction latencies

The 1w instruction does not finish reading data until the end of the Memory
stage,

Therefore its result cannot be forwarded to the Execute stage of the next
instruction.



Stalling

1 2 4 5 6 7 8 9
L
Time (cycles)
1 20 M v$sO
1w $s0, 40($0) IM LD—[RF 40 _:B— —|—DM—_ |RF
dV $s0 $s0 / v$to
and $t0, $s0, Ssl M == RF |ss1 [RF 551 5 DML | RF
X 4l$s4 < st1
or $t11 $S4r $SO IM or IM = -[RF $s0 —|—DM— RF
== |
Stall ) - )
sub $t2, $s0, $sb5 IM == RF [ss5 :B— DM RF




