Model Checking Practicals:
Assignment 2 - PDR

April 22, 2021

1 Assignment Summary

The goal of the second exercise in the model checking practicals is to imple-
ment the property-directed reachability method. The implementation is
supposed to rely on the Model Checking book, and especially the method pre-
sented in the lecture slides. Unlike K-induction, PDR is significantly different
from BMC, and requires several custom data structures. In particular, you will
even need a second Z3 solver for PDR. Your work for this assignment continues
in the same repository with the same team. At the end, both K-induction and
BMC have to work as well, so do not break them and test regularly. As before,
submissions are done directly in the repository, by creating and pushing the tag
"pdr”. The preliminary submission deadline is the Thursday 27th of May
end-of-day. The question hour times stay the same, and we provide question
hours every Tuesday from 10:00 to 11:00 where you can ask us implemen-
tation related questions. The rest of the document provides more details.

2 Setup

You should already have a repository which you used in the first assignment with
your teammates. There are minor changes in the upstream repository to make
your implementation efforts easier. You can obtain these changes by pulling
from the upstream remote and merging the changes. Any further improvements
or fixes will be published in that repository and we will notify you as soon as
possible.

git pull upstream master
# merge here if necessary
git push origin master

After implementing everything, you submit the solution by running the fol-
lowing commands.

git tag "pdr"
git push origin "pdr"



In case you need to fix something after tagging the submission commit, you
just update the tag to the new commit.

3 Implementing Property-directed Reachability

In this assignment, your task is to extend your previous work with an implemen-
tation of PDR as discussed in the lecture. Since this model-checking method
is significantly different from the other two, you will need several custom data
structures (e.g. the trace, frames) and members of the Checker class (e.g. a
separate Z3 solver, the two required states, proof obligation tracking, etc.).

As discussed in the lecture, works with one state transition. This means that
you need to store two sets of state variables. Just like in the last assignment, we
call these sets V and V;. In addition, there are two sets of transition equalities
Ty, which represents the initial state, and 737, which represents the transition
equalities between Vy and V;. Just like with BMC and K-induction from the
last assignment, we call C; and B; the constraints and bad state properties for
the ¢ — th state variables V; respectively.

First, PDR checks whether the initial state fulfills any bad state properties.
If it does, the there is an early termination. Your implementation will check the

f()rmula 1m Equa‘ 10n m
<b6v > " (t/\GJ ) " <4/\€ c) ( )
Bo 0 ceCo

Next, for each bound value k, we create a set of clauses F}, which represents
all states reachable in k steps. Importantly, this is a formula over the variables
in Vp, as we will pretend that this over-approximation of the post-image is our
initial state in calls to the solver.

When checking whether a bad state is reachable in k+ 1 steps, we start from
all good states reachable in k steps, and ask the SAT solver whether any bad
state property is satisfiable after a state transition. This satisfiability call is
shown in Equation [2| Here, the variables V|, are asserted to be in a good state
that is part of Fj, all input constraints hold, and that a variables V; reach a
bad state, while respecting the state transition.

(A (A (A () e

If this check is unsatisfiable, then no bad state is reachable in k£ + 1 steps.
The algorithm increases k, prepares a new frame and continues with the search.
However, if the formula is satisfiable, then there is a reachable bad state.
The solver returns assignments so : Vo — {1, T} and s : Vi — {L, T} to the
state variables in V;; and Vj, where s; is a bad state, and s is its predecessor.



For example, if we have Vi = {agp,bo} and Vi = {a1,b1}, so(ag) = T,
So(bp) = L, then sg can be turned into a cube p := (ag = T) A (bg = L), which
can be rewritten as p := ag A —bg.

Since Fj is an over-approximation of the reachable states, PDR needs to
check whether this is a real problem or just an error caused by the over-
approximation. Therefore, PDR attempts to forbid the predecessor of the bad
state and therefore make the over-approximation tight again. This is what is
done in the removeBad function you have seen in the lecture.

Given a variable assignment sg, PDR replaces the variables in V with vari-
ables from V;. In the example from before, this would yield a cube p[V;/Vp] :=
a1 A —by. This allows PDR to say that if wants find a state at in frame Fj_;
which reaches the bad state in frame F} within one transition. This loop is re-
peated recursively until either, we show that the predecessor of the original bad
state is not reachable, or we find a chain of states between an initial state and
the bad state we started removeBad with initially. The formula in Equation [3]
shows an encoding of the satisfiability call you will use in your implementation.
The formula p[V;/Vp] is again a conjunction over literals from V.

(/\ﬂb>A N\ f /\(/\t)/\( A c)/\p[Vl/VO] (3)

be By fEF;_1 teTy ceCoUCy

PDR will then again use the value assignment to V| to call itself again for the
previous frame. If however, the formula was not satisfiable, then the function
extends all frames j < i with the clause —p. Additionally, the implementation
attempts to propagate the learned clause forward to frames j > i as well, so
long as it holds there as well.

Generalization. After finding that a state is not reachable in a given frame,
we can attempt to generalize it to a set of states by shortening the cube that
represents it. In general, this is done so that the new cube p contains less
literals than p, and still makes the formula unsatisfiable, and does not intersect
the initial states. This generalization step can be accelerated by looking at
the unsatisfiable core of the assumptions given to the Z3 solver. This can be
achieved with z3: :solver: :unsat_core, which gives you all assumptions that
73 used when proving the formula unsatisfiable. The assignments present in the
unsatisfiable core must be part of p, and for those that are not, you just need
to check whether they intersect with the initial states as dictated by Tp.

Counterexamples. Your implementation has to produce counterexample traces,
just like BMC. The functions for printing the counter example is already in the
template repository, you just need to reconstruct it. To be able to print the
counter examples, you just need to keep track of the argumets that removeBad
pseudocode is called with. In particular, we suggest that you keep a stack of
these cubes, also called proof obligations in PDR, and instead do implement
removeBad iteratively.



	Assignment Summary
	Setup
	Implementing Property-directed Reachability

