
Model Checking Practicals:

Assignment 1 - K-Induction

March 26, 2021

1 Assignment Summary

The goal of the first exercise in the model checking practicals is to implement
the k-induction method. The implementation is supposed to closely follow the
Model Checking book. Your implementation must extend the provided BMC
implementation using incremental solving with Z3. You will receive repositories
inside which you implement this task in teams of up to three people. Sub-
missions are done directly in the repository, by creating and pushing the tag
”kind”. The preliminary submission deadline is the Thursday 22nd of April
end-of-day. We provide question hours every Tuesday from 10:00 to 11:00
where you can ask us implementation related questions. If there is enough in-
terest, we can also give you a short demo of the C++ API you will use. The
rest of the document provides more details.

2 Overview

Model Checking is a new course, first introduced this year. While the overall
course covers all topics related to model checking, the practicals only look at
SAT-based methods. In particular, throughout the practicals, you will imple-
ment a full-fledged hardware model checker that could appear at the annual
competition [BvH17]. At the end of the practicals, your implementation will
support bounded model checking (BMC), k-induction (KIND), and property di-
rected reachability (PDR). You and your teammates are not doing this from
scratch of course, and we provide you with a minimal implementation that
parses the input format, program options, and tries to check whether a prop-
erty holds.

3 Setup

As already mentioned in the lecture, you can do this exercise in groups of up
to three students. Working in a team is not strictly necessary, you can do the

1

exercise on your own, but we strongly encourage collaboration. On one hand
you have to do less work in principle, and on the other hand you have someone
you can bounce ideas at and get a better understanding of the algorithms.

Each student will receive a repository for this exercise. In case you collabo-
rate in a team, you have to choose one of the repositories we provided and do
all of your work there. As soon as you create a team, please contact us and we
can give you the appropriate access rights.

The repository we provide you with is empty. As soon as the teams are
decided, you can declare our template repository as your upstream, and pull the
framework we provide from there. Any improvements or fixes will be published
in that repository and we will notify you as soon as possible.

URL="https://extgit.iaik.tugraz.at/scos/scos.teaching/mc2021.git"

git remote add upstream $URL

git pull upstream master

git push origin master

./mk_submodules.sh

After implementing everything, you submit the solution by running the fol-
lowing commands.

git tag "kind"

git push origin "kind"

In case you need to fix something after tagging the submission commit, you
just update the tag to the new commit.

4 Template

This section is meant as a lightweight documentation of the framework you will
use in the exercise. It is meant to provide you with details about the features
that are already implemented. In principle, you can change pretty much all parts
of the program, as long as you do not break it. While this section provides you
with an overview, Section 5 contains all the details of your actual task.

4.1 Input Format

The template implementation already includes a lot of things needed for a hard-
ware model checker. Since the benchmarks used at the official competition use
the BTOR2 format [NPWB], we include a BTOR2 parser that extracts a circuit
from the input file. As a bit-vector format, BTOR2 has its own type system,
where each file declares its sorts as bit-vectors of a certain length. Furthermore,
the format specifies state variables which are actually just registers in the hard-
ware design, that include an init for reset values, and next for flip-flop inputs
triggered with a clock. Similarly, circuit each input corresponds to one of the
signals provided from outside the circuit, and might change in each clock cycle.
Assumptions about these inputs are defined using constraint properties, which

2

model the environments interaction with the system. Other than that, all the
wires are represented as gate outputs. In contrast to real RTL, BTOR2 includes
a few special declarations related to model checking. Out of those, the only in-
teresting one for this exercise is the bad property, which defines one condition
which makes a state bad. There can be multiple bad state conditions, and if
any of them is satisfied, the state is undesirable. Essentially, these are negations
of invariant properties which we want to prove using model checking.

4.2 Modeling with Z3

Since we are looking at satisfiability-based model checking methods, we need to
perform a translation of the input file into something a solver could understand.
In this exercise, we use the Z3 SMT solver [dMB, BdMNW] which already
provides a way to represent bit-vectors, and apply bit-vector operations. This
makes the translation from BTOR2 rather straight-forward. When representing
the state of a circuit in one clock cycle, we use a set of appropriate bit-vector
variables together with their names in the BTOR2 input file. For each gate in
the design, we recursively construct a formula representing it. Each such formula
only uses state variables, inputs in the given clock cycle and constants. For state
variables, we tell the SMT solver that their value should be either defined by
initial values in the first cycle, or by the computation from the previous cycle.
This is achieved by adding equality constraints into the solver which force any
satisfiable answer to obey the next state logic and reset logic from the BTOR2
file.

4.3 Bounded Model Checking

The template contains an implementation of BMC. The implementation, as
expected, does an unrolling of the circuit. The implementation maintains a trace
of BMC frames, where each frame corresponds to the state of a circuit in a given
clock cycle. Each frame is constructed as described in the previous section, and
consists of several components. The frame has a set of variables Vi for registers
and inputs, and a set of formulas Fi for the intermediate computations. For
the transitions between the (i − 1)-th and i-th frame, BMC constructs a set
of equalities Ti := {v = w} where v ∈ Vi and w ∈ Vi−1 ∪ Fi−1 ∪ L and L is
a set of constants. Using this notation, the initial transition state of variables
V0, we have a transition T0 where V−1 ∪ F−1 = ∅. Additionally, the set of
constraints Ci makes sure that the solver respects the assumptions about the
circuit’s environment.

In each BMC step, the implementation tries to find a sequence of states such
that the last state in the sequence satisfies a bad state property, meaning that it
violates an invariant. If we call Bi the set of bad state properties in each frame,
then the solver tries to solve Equation 1.(∨

b∈Bk

b

)
∧

k∧
i=0

((∧
t∈Ti

t

)
∧

(∧
c∈Ci

c

))
(1)

3

If any such states are found, BMC terminates and prints the counterexample
as a simulation trace for the given circuit. In case none are found, BMC expands
the trace by one frame and tries again. Note here, that the bad state property
is only checked in the last frame, as the previous iteration show that no bad
state is reachable in any of the previous frames.

5 Implementing K-Induction

Your first task for the practicals is to extend the provided template with your
own implementation of k-induction. Your implementation is supposed to reuse
the whole infrastructure we provided, including the BMC solver exp solver

and trace exp trace. This is something done by all modern model checkers
that support both BMC and k-induction. They reuse the same solver, and use
assumptions to determine which algorithm they are executing.

K-induction, as used in model checking has two phases. The initiation phase
is the same as BMC and checks whether a bad state is reachable in k transitions.
If this phase fails, the algorithm aborts and reports the BMC counterexample.
The consecution phase, commonly referred to as inductive step, checks whether,
given that no bad state is reached in k-1 transitions, a bad state can be reached
in the k-th transition. In the case a bad state is not reachable, k-induction
has proven that a bad state is never reachable. Otherwise, if the k-th transi-
tion reaches a bad state, then k is incremented and the whole process repeats.
Equation 2 summarizes the consecution phase.(∨

b∈Bk

b

)
∧

k−1∧
i=0

(∧
b∈Bi

¬b

)
∧

k∧
i=1

(∧
t∈Ti

t

)
∧

k∧
i=0

(∧
c∈Ci

c

)
(2)

Looking at Equations 1 and 2 more closely, we see that they share everything
except the conditions of the initial state, and the unreachability of bad states
in the first k states. (∧

t∈T0

t

)
∧

k−1∧
i=0

(∧
b∈Bi

¬b

)
,

You are allowed to change the implementation of BMC so that you can
reuse the solver properly. The mentioned differences already give you a hint of
what you need to change and turn on or off depending on the algorithm you
are executing. Consider using the z3::solver::push and z3::solver::pop

functions to dynamically create backtracking points in the solver so that you
can add and remove parts of the formula at will. An example of this is already
used in the BMC implementation.

4

References

[BdMNW] Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, and
Christoph M. Wintersteiger. Programming Z3. In Jonathan P.
Bowen, Zhiming Liu, and Zili Zhang, editors, Engineering Trust-
worthy Software Systems - 4th International School, SETSS 2018,
Chongqing, China, April 7-12, 2018, Tutorial Lectures.

[BvH17] A. Biere, T. van Dijk, and K. Heljanko. Hardware model check-
ing competition 2017. In 2017 Formal Methods in Computer Aided
Design (FMCAD), pages 9–9, 2017.

[dMB] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient
SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.

[NPWB] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere.
Btor2 , btormc and boolector 3.0. In Hana Chockler and Georg
Weissenbacher, editors, Computer Aided Verification - 30th Interna-
tional Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
Part I.

5

	Assignment Summary
	Overview
	Setup
	Template
	Input Format
	Modeling with Z3
	Bounded Model Checking

	Implementing K-Induction

