
Secure Software Development

Assignment D1+D2: Defensive Programming

Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser

11.11.2020

Winter 2020/21, www.iaik.tugraz.at/ssd



Defensive Programming



Timeline www.tugraz.at

� Deadline D1: 11.12.2020 - 23:59:59 tag: d1

� Deadline D2: 18.12.2020 - 23:59:59 tag: d2

2 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Since you’re now an expert in exploiting bugs,

it is important to know how to avoid them.



Kinds of Bugs www.tugraz.at

� Mistakes happen everywhere (especially in C)

� Look at the hacklets from assignments H1+H2

� It is up to you to write better, safer code

3 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Write Readable Code www.tugraz.at

� What does the following code do?
!ErrorHasOccured () ??!??! HandleError ();

� Error handling, but what is the ??!??! operator?

� What about this beautiful #define?
#define MAGIC(e) (sizeof(struct { int:-!!(e); }))

� It is magic of course! What is :-!! though?

� Such code is unreadable and easily causes bugs

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c

https://stackoverflow.com/questions/9229601/what-is-in-c-code

4 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c
https://stackoverflow.com/questions/9229601/what-is-in-c-code


Write Readable Code www.tugraz.at

� What does the following code do?
!ErrorHasOccured () ??!??! HandleError ();

� Error handling, but what is the ??!??! operator?

� What about this beautiful #define?
#define MAGIC(e) (sizeof(struct { int:-!!(e); }))

� It is magic of course! What is :-!! though?

� Such code is unreadable and easily causes bugs

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c

https://stackoverflow.com/questions/9229601/what-is-in-c-code

4 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c
https://stackoverflow.com/questions/9229601/what-is-in-c-code


Write Readable Code www.tugraz.at

� What does the following code do?
!ErrorHasOccured () ??!??! HandleError ();

� Error handling, but what is the ??!??! operator?

� What about this beautiful #define?
#define MAGIC(e) (sizeof(struct { int:-!!(e); }))

� It is magic of course! What is :-!! though?

� Such code is unreadable and easily causes bugs

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c

https://stackoverflow.com/questions/9229601/what-is-in-c-code

4 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c
https://stackoverflow.com/questions/9229601/what-is-in-c-code


Write Readable Code www.tugraz.at

� What does the following code do?
!ErrorHasOccured () ??!??! HandleError ();

� Error handling, but what is the ??!??! operator?

� What about this beautiful #define?
#define MAGIC(e) (sizeof(struct { int:-!!(e); }))

� It is magic of course! What is :-!! though?

� Such code is unreadable and easily causes bugs

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c

https://stackoverflow.com/questions/9229601/what-is-in-c-code

4 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c
https://stackoverflow.com/questions/9229601/what-is-in-c-code


Write Readable Code www.tugraz.at

� What does the following code do?
!ErrorHasOccured () ??!??! HandleError ();

� Error handling, but what is the ??!??! operator?

� What about this beautiful #define?
#define MAGIC(e) (sizeof(struct { int:-!!(e); }))

� It is magic of course! What is :-!! though?

� Such code is unreadable and easily causes bugs

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c

https://stackoverflow.com/questions/9229601/what-is-in-c-code

4 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c
https://stackoverflow.com/questions/9229601/what-is-in-c-code


Write Readable Code www.tugraz.at

� What does the following code do?
!ErrorHasOccured () ??!??! HandleError ();

� Error handling, but what is the ??!??! operator?

� What about this beautiful #define?
#define MAGIC(e) (sizeof(struct { int:-!!(e); }))

� It is magic of course! What is :-!! though?

� Such code is unreadable and easily causes bugs

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c

https://stackoverflow.com/questions/9229601/what-is-in-c-code

4 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c
https://stackoverflow.com/questions/9229601/what-is-in-c-code


General goal www.tugraz.at

� Implement software in a secure manner

� Use good coding style

� Use defensive programming principles

� Do proper error handling

� Write your own tests

� Become a better software-engineer

5 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



General goal www.tugraz.at

� Implement software in a secure manner

� Use good coding style

� Use defensive programming principles

� Do proper error handling

� Write your own tests

� Become a better software-engineer

5 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Task: S5



Super Secure String Stack System www.tugraz.at

� Implement a delicious library called libs5

� S5 is a stack machine for string operations

� Data memory and stack memory

� String operation unit (SOU)

� String operation commands

� Parse and execute S5 programs using libs5

6 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Super Secure String Stack System www.tugraz.at

� Implement a delicious library called libs5

� S5 is a stack machine for string operations

� Data memory and stack memory

� String operation unit (SOU)

� String operation commands

� Parse and execute S5 programs using libs5

6 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Super Secure String Stack System www.tugraz.at

� Implement a delicious library called libs5

� S5 is a stack machine for string operations

� Data memory and stack memory

� String operation unit (SOU)

� String operation commands

� Parse and execute S5 programs using libs5

6 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Super Secure String Stack System www.tugraz.at

� Implement a delicious library called libs5

� S5 is a stack machine for string operations

� Data memory and stack memory

� String operation unit (SOU)

� String operation commands

� Parse and execute S5 programs using libs5

6 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Super Secure String Stack System www.tugraz.at

� Implement a delicious library called libs5

� S5 is a stack machine for string operations

� Data memory and stack memory

� String operation unit (SOU)

� String operation commands

� Parse and execute S5 programs using libs5

6 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Super Secure String Stack System www.tugraz.at

� Implement a delicious library called libs5

� S5 is a stack machine for string operations

� Data memory and stack memory

� String operation unit (SOU)

� String operation commands

� Parse and execute S5 programs using libs5

6 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



S5 Diagram www.tugraz.at

7 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Operations with S5 www.tugraz.at

� S5 must support basic internal memory handling:

� Init, Delete, Pop, Push, Store, Load, Getters, Setters

� These are used to implement everything else!

� S5 should support the following stack operations:

� Store (!), Load (@), Drop (0), Dup (2), Over (/)

� S5 should support the following string operations:

� Reverse (~), Insert (^), Slice (:), Split (*), Replace (%)

8 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Operations with S5 www.tugraz.at

� S5 must support basic internal memory handling:

� Init, Delete, Pop, Push, Store, Load, Getters, Setters

� These are used to implement everything else!

� S5 should support the following stack operations:

� Store (!), Load (@), Drop (0), Dup (2), Over (/)

� S5 should support the following string operations:

� Reverse (~), Insert (^), Slice (:), Split (*), Replace (%)

8 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Operations with S5 www.tugraz.at

� S5 must support basic internal memory handling:

� Init, Delete, Pop, Push, Store, Load, Getters, Setters

� These are used to implement everything else!

� S5 should support the following stack operations:

� Store (!), Load (@), Drop (0), Dup (2), Over (/)

� S5 should support the following string operations:

� Reverse (~), Insert (^), Slice (:), Split (*), Replace (%)

8 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Operations with S5 www.tugraz.at

� S5 must support basic internal memory handling:

� Init, Delete, Pop, Push, Store, Load, Getters, Setters

� These are used to implement everything else!

� S5 should support the following stack operations:

� Store (!), Load (@), Drop (0), Dup (2), Over (/)

� S5 should support the following string operations:

� Reverse (~), Insert (^), Slice (:), Split (*), Replace (%)

8 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Operations with S5 www.tugraz.at

� S5 must support basic internal memory handling:

� Init, Delete, Pop, Push, Store, Load, Getters, Setters

� These are used to implement everything else!

� S5 should support the following stack operations:

� Store (!), Load (@), Drop (0), Dup (2), Over (/)

� S5 should support the following string operations:

� Reverse (~), Insert (^), Slice (:), Split (*), Replace (%)

8 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Operations with S5 www.tugraz.at

� S5 must support basic internal memory handling:

� Init, Delete, Pop, Push, Store, Load, Getters, Setters

� These are used to implement everything else!

� S5 should support the following stack operations:

� Store (!), Load (@), Drop (0), Dup (2), Over (/)

� S5 should support the following string operations:

� Reverse (~), Insert (^), Slice (:), Split (*), Replace (%)

8 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Operations with S5 www.tugraz.at

� S5 must support basic internal memory handling:

� Init, Delete, Pop, Push, Store, Load, Getters, Setters

� These are used to implement everything else!

� S5 should support the following stack operations:

� Store (!), Load (@), Drop (0), Dup (2), Over (/)

� S5 should support the following string operations:

� Reverse (~), Insert (^), Slice (:), Split (*), Replace (%)

8 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Example Program www.tugraz.at

3 ; three memory locations

hello ; mem[0]

world ; mem[1]

; mem[2]

7 ; eight instructions

@ 0 ; T1 = mem[0]

~ ; reverse T1

! 0 ; mem[0] = T1, T1 removed

@ 1 ; T1 = mem[1]

@ 0 ; T2 = T1, T1 = mem[0]

^ 0 ; T1 = insert T1 into T2 at 0

! 2 ; mem[2] = T1, T1 removed

9 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Earning Points www.tugraz.at

Defensive 1:

� 100 regular points (25%)

� 0 points per internal function

� 4 points per stack command

� 12 points per string command

� 20 points for file parsing

� 20 bonus points (5%) for code

coverage

� See the API description in s5.h

Defensive 2:

� 84 regular points (21%)

� 0 points per internal function

� 4 points per stack command

� 6 points per string command

� 34 points for file parsing

� API is pretty much the same

10 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Earning Points www.tugraz.at

Defensive 1:

� 100 regular points (25%)

� 0 points per internal function

� 4 points per stack command

� 12 points per string command

� 20 points for file parsing

� 20 bonus points (5%) for code

coverage

� See the API description in s5.h

Defensive 2:

� 84 regular points (21%)

� 0 points per internal function

� 4 points per stack command

� 6 points per string command

� 34 points for file parsing

� API is pretty much the same

10 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Earning Points www.tugraz.at

Defensive 1:

� 100 regular points (25%)

� 0 points per internal function

� 4 points per stack command

� 12 points per string command

� 20 points for file parsing

� 20 bonus points (5%) for code

coverage

� See the API description in s5.h

Defensive 2:

� 84 regular points (21%)

� 0 points per internal function

� 4 points per stack command

� 6 points per string command

� 34 points for file parsing

� API is pretty much the same

10 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Earning Points www.tugraz.at

Defensive 1:

� 100 regular points (25%)

� 0 points per internal function

� 4 points per stack command

� 12 points per string command

� 20 points for file parsing

� 20 bonus points (5%) for code

coverage

� See the API description in s5.h

Defensive 2:

� 84 regular points (21%)

� 0 points per internal function

� 4 points per stack command

� 6 points per string command

� 34 points for file parsing

� API is pretty much the same

10 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Earning Points www.tugraz.at

Defensive 1:

� 100 regular points (25%)

� 0 points per internal function

� 4 points per stack command

� 12 points per string command

� 20 points for file parsing

� 20 bonus points (5%) for code

coverage

� See the API description in s5.h

Defensive 2:

� 84 regular points (21%)

� 0 points per internal function

� 4 points per stack command

� 6 points per string command

� 34 points for file parsing

� API is pretty much the same

10 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Earning Points www.tugraz.at

Defensive 1:

� 100 regular points (25%)

� 0 points per internal function

� 4 points per stack command

� 12 points per string command

� 20 points for file parsing

� 20 bonus points (5%) for code

coverage

� See the API description in s5.h

Defensive 2:

� 84 regular points (21%)

� 0 points per internal function

� 4 points per stack command

� 6 points per string command

� 34 points for file parsing

� API is pretty much the same

10 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Earning Points www.tugraz.at

Defensive 1:

� 100 regular points (25%)

� 0 points per internal function

� 4 points per stack command

� 12 points per string command

� 20 points for file parsing

� 20 bonus points (5%) for code

coverage

� See the API description in s5.h

Defensive 2:

� 84 regular points (21%)

� 0 points per internal function

� 4 points per stack command

� 6 points per string command

� 34 points for file parsing

� API is pretty much the same

10 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Functional Dependencies www.tugraz.at

In our testing framework, some functions must work so that others can be tested. Here
is a full overview of how these dependencies look:

ID Function Name Dependencies

A Init

B Delete A

C Pop / Push / Store / Load A B

E Set Memory A B

F Get Memory / Size A B C E

G Get Stack / Pos A B C E

H Cmd Store / Cmd Load A B E

I Cmd Drop / Cmd Dup A B C G

K Cmd Over / Cmd Reverse A B C

M Cmd Insert / Cmd Slice A B C

O Cmd Split / Cmd Replace A B C

Q File Parsing All

11 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws I www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)

globally reduce points, regardless of whether exploitable or not!

� -3 points per issue

� Hard program crash, segfault and similar

� Memory corruptions and leaks, use after free, use of uninitialized

memory

� other stuff reported by valgrind, address sanitizer & co

� Format string vulnerability, integer overflow, ...

� Undefined behavior, non-portable code

� Hard-to-read and dangerous code, i.e. #define

� Use of global variables

� Compiler warnings with -Wall

12 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws I www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)

globally reduce points, regardless of whether exploitable or not!

� -3 points per issue

� Hard program crash, segfault and similar

� Memory corruptions and leaks, use after free, use of uninitialized

memory

� other stuff reported by valgrind, address sanitizer & co

� Format string vulnerability, integer overflow, ...

� Undefined behavior, non-portable code

� Hard-to-read and dangerous code, i.e. #define

� Use of global variables

� Compiler warnings with -Wall

12 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws I www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)

globally reduce points, regardless of whether exploitable or not!

� -3 points per issue

� Hard program crash, segfault and similar

� Memory corruptions and leaks, use after free, use of uninitialized

memory

� other stuff reported by valgrind, address sanitizer & co

� Format string vulnerability, integer overflow, ...

� Undefined behavior, non-portable code

� Hard-to-read and dangerous code, i.e. #define

� Use of global variables

� Compiler warnings with -Wall

12 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws I www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)

globally reduce points, regardless of whether exploitable or not!

� -3 points per issue

� Hard program crash, segfault and similar

� Memory corruptions and leaks, use after free, use of uninitialized

memory

� other stuff reported by valgrind, address sanitizer & co

� Format string vulnerability, integer overflow, ...

� Undefined behavior, non-portable code

� Hard-to-read and dangerous code, i.e. #define

� Use of global variables

� Compiler warnings with -Wall

12 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws I www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)

globally reduce points, regardless of whether exploitable or not!

� -3 points per issue

� Hard program crash, segfault and similar

� Memory corruptions and leaks, use after free, use of uninitialized

memory

� other stuff reported by valgrind, address sanitizer & co

� Format string vulnerability, integer overflow, ...

� Undefined behavior, non-portable code

� Hard-to-read and dangerous code, i.e. #define

� Use of global variables

� Compiler warnings with -Wall

12 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws I www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)

globally reduce points, regardless of whether exploitable or not!

� -3 points per issue

� Hard program crash, segfault and similar

� Memory corruptions and leaks, use after free, use of uninitialized

memory

� other stuff reported by valgrind, address sanitizer & co

� Format string vulnerability, integer overflow, ...

� Undefined behavior, non-portable code

� Hard-to-read and dangerous code, i.e. #define

� Use of global variables

� Compiler warnings with -Wall

12 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws I www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)

globally reduce points, regardless of whether exploitable or not!

� -3 points per issue

� Hard program crash, segfault and similar

� Memory corruptions and leaks, use after free, use of uninitialized

memory

� other stuff reported by valgrind, address sanitizer & co

� Format string vulnerability, integer overflow, ...

� Undefined behavior, non-portable code

� Hard-to-read and dangerous code, i.e. #define

� Use of global variables

� Compiler warnings with -Wall

12 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws I www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)

globally reduce points, regardless of whether exploitable or not!

� -3 points per issue

� Hard program crash, segfault and similar

� Memory corruptions and leaks, use after free, use of uninitialized

memory

� other stuff reported by valgrind, address sanitizer & co

� Format string vulnerability, integer overflow, ...

� Undefined behavior, non-portable code

� Hard-to-read and dangerous code, i.e. #define

� Use of global variables

� Compiler warnings with -Wall

12 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws I www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)

globally reduce points, regardless of whether exploitable or not!

� -3 points per issue

� Hard program crash, segfault and similar

� Memory corruptions and leaks, use after free, use of uninitialized

memory

� other stuff reported by valgrind, address sanitizer & co

� Format string vulnerability, integer overflow, ...

� Undefined behavior, non-portable code

� Hard-to-read and dangerous code, i.e. #define

� Use of global variables

� Compiler warnings with -Wall

12 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws II www.tugraz.at

� We test your submission against our own test suite

� Here is how you can avoid bugs:

� Listen to your compiler and eliminate warnings

� Use static code analysis like scan-build

� Use a fuzzing framework like AFL

� Write your own test cases

� Use valgrind, address-sanitizer, etc.

� Let your experienced colleagues check your code �

� Reuse code when possible and avoid duplication

13 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws II www.tugraz.at

� We test your submission against our own test suite

� Here is how you can avoid bugs:

� Listen to your compiler and eliminate warnings

� Use static code analysis like scan-build

� Use a fuzzing framework like AFL

� Write your own test cases

� Use valgrind, address-sanitizer, etc.

� Let your experienced colleagues check your code �

� Reuse code when possible and avoid duplication

13 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws II www.tugraz.at

� We test your submission against our own test suite

� Here is how you can avoid bugs:

� Listen to your compiler and eliminate warnings

� Use static code analysis like scan-build

� Use a fuzzing framework like AFL

� Write your own test cases

� Use valgrind, address-sanitizer, etc.

� Let your experienced colleagues check your code �

� Reuse code when possible and avoid duplication

13 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws II www.tugraz.at

� We test your submission against our own test suite

� Here is how you can avoid bugs:

� Listen to your compiler and eliminate warnings

� Use static code analysis like scan-build

� Use a fuzzing framework like AFL

� Write your own test cases

� Use valgrind, address-sanitizer, etc.

� Let your experienced colleagues check your code �

� Reuse code when possible and avoid duplication

13 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws II www.tugraz.at

� We test your submission against our own test suite

� Here is how you can avoid bugs:

� Listen to your compiler and eliminate warnings

� Use static code analysis like scan-build

� Use a fuzzing framework like AFL

� Write your own test cases

� Use valgrind, address-sanitizer, etc.

� Let your experienced colleagues check your code �

� Reuse code when possible and avoid duplication

13 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws II www.tugraz.at

� We test your submission against our own test suite

� Here is how you can avoid bugs:

� Listen to your compiler and eliminate warnings

� Use static code analysis like scan-build

� Use a fuzzing framework like AFL

� Write your own test cases

� Use valgrind, address-sanitizer, etc.

� Let your experienced colleagues check your code �

� Reuse code when possible and avoid duplication

13 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws II www.tugraz.at

� We test your submission against our own test suite

� Here is how you can avoid bugs:

� Listen to your compiler and eliminate warnings

� Use static code analysis like scan-build

� Use a fuzzing framework like AFL

� Write your own test cases

� Use valgrind, address-sanitizer, etc.

� Let your experienced colleagues check your code �

� Reuse code when possible and avoid duplication

13 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws II www.tugraz.at

� We test your submission against our own test suite

� Here is how you can avoid bugs:

� Listen to your compiler and eliminate warnings

� Use static code analysis like scan-build

� Use a fuzzing framework like AFL

� Write your own test cases

� Use valgrind, address-sanitizer, etc.

� Let your experienced colleagues check your code �

� Reuse code when possible and avoid duplication

13 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Implementation Flaws II www.tugraz.at

� We test your submission against our own test suite

� Here is how you can avoid bugs:

� Listen to your compiler and eliminate warnings

� Use static code analysis like scan-build

� Use a fuzzing framework like AFL

� Write your own test cases

� Use valgrind, address-sanitizer, etc.

� Let your experienced colleagues check your code �

� Reuse code when possible and avoid duplication

13 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

� Implement your own exhaustive test cases

� Think of corner cases

� Popping from an empty stack

� Stack size exhausted

� String out-of-bounds

� Unexpected formatting of input files

� NULL pointers, integer overflows

� Out of memory, file reading failed

� Good coverage yields bonus points (if above 50%)

Overall branch coverage Bonus points

75% <= cov < 80% 4 (1%)

80% <= cov < 85% 8 (2%)

85% <= cov < 90% 12 (3%)

90% <= cov < 95% 16 (4%)

95% <= cov 20 (5%)

14 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

� Implement your own exhaustive test cases

� Think of corner cases

� Popping from an empty stack

� Stack size exhausted

� String out-of-bounds

� Unexpected formatting of input files

� NULL pointers, integer overflows

� Out of memory, file reading failed

� Good coverage yields bonus points (if above 50%)

Overall branch coverage Bonus points

75% <= cov < 80% 4 (1%)

80% <= cov < 85% 8 (2%)

85% <= cov < 90% 12 (3%)

90% <= cov < 95% 16 (4%)

95% <= cov 20 (5%)

14 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

� Implement your own exhaustive test cases

� Think of corner cases

� Popping from an empty stack

� Stack size exhausted

� String out-of-bounds

� Unexpected formatting of input files

� NULL pointers, integer overflows

� Out of memory, file reading failed

� Good coverage yields bonus points (if above 50%)

Overall branch coverage Bonus points

75% <= cov < 80% 4 (1%)

80% <= cov < 85% 8 (2%)

85% <= cov < 90% 12 (3%)

90% <= cov < 95% 16 (4%)

95% <= cov 20 (5%)

14 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

� Implement your own exhaustive test cases

� Think of corner cases

� Popping from an empty stack

� Stack size exhausted

� String out-of-bounds

� Unexpected formatting of input files

� NULL pointers, integer overflows

� Out of memory, file reading failed

� Good coverage yields bonus points (if above 50%)

Overall branch coverage Bonus points

75% <= cov < 80% 4 (1%)

80% <= cov < 85% 8 (2%)

85% <= cov < 90% 12 (3%)

90% <= cov < 95% 16 (4%)

95% <= cov 20 (5%)

14 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

� Implement your own exhaustive test cases

� Think of corner cases

� Popping from an empty stack

� Stack size exhausted

� String out-of-bounds

� Unexpected formatting of input files

� NULL pointers, integer overflows

� Out of memory, file reading failed

� Good coverage yields bonus points (if above 50%)

Overall branch coverage Bonus points

75% <= cov < 80% 4 (1%)

80% <= cov < 85% 8 (2%)

85% <= cov < 90% 12 (3%)

90% <= cov < 95% 16 (4%)

95% <= cov 20 (5%)

14 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

� Implement your own exhaustive test cases

� Think of corner cases

� Popping from an empty stack

� Stack size exhausted

� String out-of-bounds

� Unexpected formatting of input files

� NULL pointers, integer overflows

� Out of memory, file reading failed

� Good coverage yields bonus points (if above 50%)

Overall branch coverage Bonus points

75% <= cov < 80% 4 (1%)

80% <= cov < 85% 8 (2%)

85% <= cov < 90% 12 (3%)

90% <= cov < 95% 16 (4%)

95% <= cov 20 (5%)

14 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

� Implement your own exhaustive test cases

� Think of corner cases

� Popping from an empty stack

� Stack size exhausted

� String out-of-bounds

� Unexpected formatting of input files

� NULL pointers, integer overflows

� Out of memory, file reading failed

� Good coverage yields bonus points (if above 50%)

Overall branch coverage Bonus points

75% <= cov < 80% 4 (1%)

80% <= cov < 85% 8 (2%)

85% <= cov < 90% 12 (3%)

90% <= cov < 95% 16 (4%)

95% <= cov 20 (5%)

14 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

� Implement your own exhaustive test cases

� Think of corner cases

� Popping from an empty stack

� Stack size exhausted

� String out-of-bounds

� Unexpected formatting of input files

� NULL pointers, integer overflows

� Out of memory, file reading failed

� Good coverage yields bonus points (if above 50%)

Overall branch coverage Bonus points

75% <= cov < 80% 4 (1%)

80% <= cov < 85% 8 (2%)

85% <= cov < 90% 12 (3%)

90% <= cov < 95% 16 (4%)

95% <= cov 20 (5%)

14 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

� Implement your own exhaustive test cases

� Think of corner cases

� Popping from an empty stack

� Stack size exhausted

� String out-of-bounds

� Unexpected formatting of input files

� NULL pointers, integer overflows

� Out of memory, file reading failed

� Good coverage yields bonus points (if above 50%)

Overall branch coverage Bonus points

75% <= cov < 80% 4 (1%)

80% <= cov < 85% 8 (2%)

85% <= cov < 90% 12 (3%)

90% <= cov < 95% 16 (4%)

95% <= cov 20 (5%)

14 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Test cases www.tugraz.at

� Implement your own exhaustive test cases

� Think of corner cases

� Popping from an empty stack

� Stack size exhausted

� String out-of-bounds

� Unexpected formatting of input files

� NULL pointers, integer overflows

� Out of memory, file reading failed

� Good coverage yields bonus points (if above 50%)

Overall branch coverage Bonus points

75% <= cov < 80% 4 (1%)

80% <= cov < 85% 8 (2%)

85% <= cov < 90% 12 (3%)

90% <= cov < 95% 16 (4%)

95% <= cov 20 (5%)

14 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



HELP! How should I start? www.tugraz.at

� Look through the provided readme and s5.h

� Understand the API contracts we provided:

� Who owns shared data, who can modify it

� What preconditions are required

� Each documentation string provides an example of what should happen when a

given command is executed

� Ask around on our Discord channel!

� Come by during question hours!

15 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



HELP! How should I start? www.tugraz.at

� Look through the provided readme and s5.h

� Understand the API contracts we provided:

� Who owns shared data, who can modify it

� What preconditions are required

� Each documentation string provides an example of what should happen when a

given command is executed

� Ask around on our Discord channel!

� Come by during question hours!

15 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



HELP! How should I start? www.tugraz.at

� Look through the provided readme and s5.h

� Understand the API contracts we provided:

� Who owns shared data, who can modify it

� What preconditions are required

� Each documentation string provides an example of what should happen when a

given command is executed

� Ask around on our Discord channel!

� Come by during question hours!

15 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



HELP! How should I start? www.tugraz.at

� Look through the provided readme and s5.h

� Understand the API contracts we provided:

� Who owns shared data, who can modify it

� What preconditions are required

� Each documentation string provides an example of what should happen when a

given command is executed

� Ask around on our Discord channel!

� Come by during question hours!

15 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



HELP! How should I start? www.tugraz.at

� Look through the provided readme and s5.h

� Understand the API contracts we provided:

� Who owns shared data, who can modify it

� What preconditions are required

� Each documentation string provides an example of what should happen when a

given command is executed

� Ask around on our Discord channel!

� Come by during question hours!

15 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



HELP! How should I start? www.tugraz.at

� Look through the provided readme and s5.h

� Understand the API contracts we provided:

� Who owns shared data, who can modify it

� What preconditions are required

� Each documentation string provides an example of what should happen when a

given command is executed

� Ask around on our Discord channel!

� Come by during question hours!

15 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



HELP! How should I start? www.tugraz.at

� Look through the provided readme and s5.h

� Understand the API contracts we provided:

� Who owns shared data, who can modify it

� What preconditions are required

� Each documentation string provides an example of what should happen when a

given command is executed

� Ask around on our Discord channel!

� Come by during question hours!

15 Ehrenreich, Hadzic, Lamster, Nageler, Schwarzl, Weiser — Winter 2020/21, www.iaik.tugraz.at/ssd



Any Questions?


	Defensive Programming
	Task: S5

