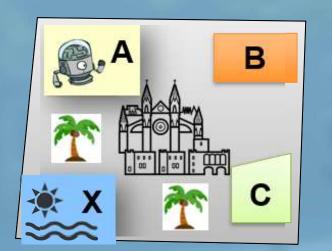
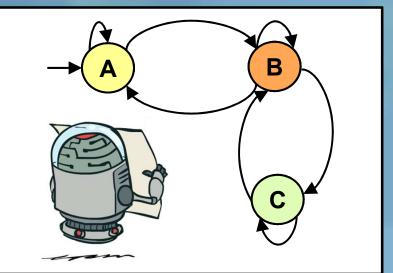


Graz University of Technology Institute for Applied Information Processing and Communications

Automata and LTL Model Checking Part-3 Bettina Könighofer





Model Checking SS21

June 10th 2021

Outline

Finite automata on finite words

IIAIK

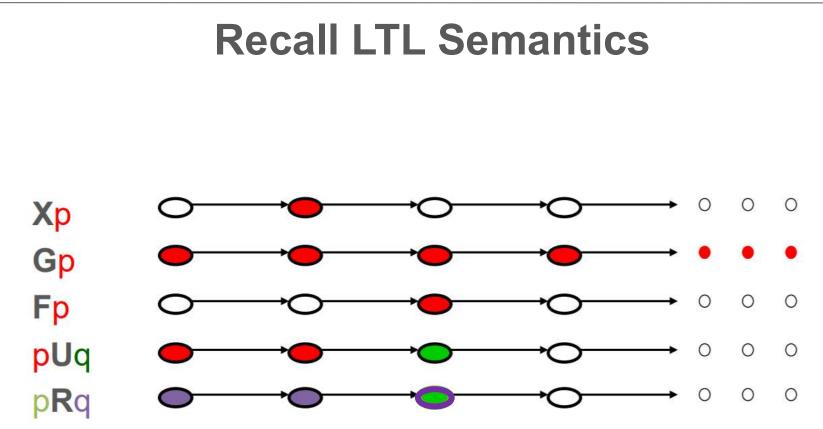
2

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Translation of LTL to Büchi automata

Translation of LTL to Büchi automata

Given an LTL formula φ , construct a generalized Büchi automaton \mathcal{A}_{φ}

• \mathcal{A}_{φ} accepts exactly all the traces that satisfy φ



Translation of LTL to Büchi automata

Given an LTL formula φ , construct a generalized Büchi automaton \mathcal{A}_{φ}

- **1.** Translate φ into generalized Büchi Automaton
- 2. Translate generalized Büchi to Büchi automaton

Rewriting

- Algorithm only handles
 - $\neg, \Lambda, \vee, X, U, (R)$

LIAIK

6

- Use rewriting Rules $\neg G\varphi = F \neg \varphi$
 - $F\varphi = true U\varphi$
 - $G\varphi = \neg F \neg \varphi = false R \varphi$

•
$$\neg(\varphi R\psi) = \neg\varphi U\neg\psi$$

From LTL formula φ to GBA \mathcal{A}_{φ}

Each state of the automata is **labelled** with **a set of properties/sub-formulas** that should be satisfied **on paths starting at that state**

Closure of an LTL formula $\varphi - cl(\varphi)$

- $\mathsf{cl}(\varphi)$
 - ... subformulas of φ and their negation
 - ... subsets of $cl(\varphi)$ define state space of \mathcal{A}_{φ}

Closure of an LTL formula $\varphi - cl(\varphi)$

- $\mathsf{cl}(arphi)$
 - ... subformulas of φ and their negation
- Formally:
 - $\varphi \in cl(\varphi)$.
 - If $\varphi_1 \in cl(\varphi)$, then $\neg \varphi_1 \in cl(\varphi)$.
 - If $\neg \varphi_1 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$.
 - If $\varphi_1 \lor \varphi_2 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$ and $\varphi_2 \in cl(\varphi)$.
 - If $X \varphi_1 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$.
 - If $\varphi_1 U \varphi_2 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$ and $\varphi_2 \in cl(\varphi)$.

Closure of an LTL formula $\varphi - cl(\varphi)$ • $cl(\varphi)$ • ... subformulas of φ and their negation • $\varphi \coloneqq (\neg p U ((Xq) \lor r))$

• Compute $cl(\varphi)$

Closure of an LTL formula φ

- ... subformulas of φ and their negation

•
$$\varphi \coloneqq (\neg p U ((Xq) \lor r))$$

•
$$cl((\neg pU((Xq) \lor r))) =$$

 $\{(\neg pU((Xq) \lor r)), \neg (\neg pU((Xq) \lor r)), \neg p, p, ((Xq) \lor r), \neg ((Xq) \lor r), (Xq), \neg q, n, \gamma r)\}$

Good sets in $cl(\varphi)$

 $S \subseteq cl(\varphi)$ is **good** in $cl(\varphi)$ if S is a maximal set of formulas in $cl(\varphi)$ that is **consistent**:

- **1.** For all $\varphi_1 \in cl(\varphi)$: $\varphi_1 \in S \Leftrightarrow \neg \varphi_1 \notin S$,
- **2.** For all $\varphi_1 \lor \varphi_2 \in cl(\varphi)$: $\varphi_1 \lor \varphi_2 \in S \Leftrightarrow$

at least one of φ_1 , φ_2 is in **S**.

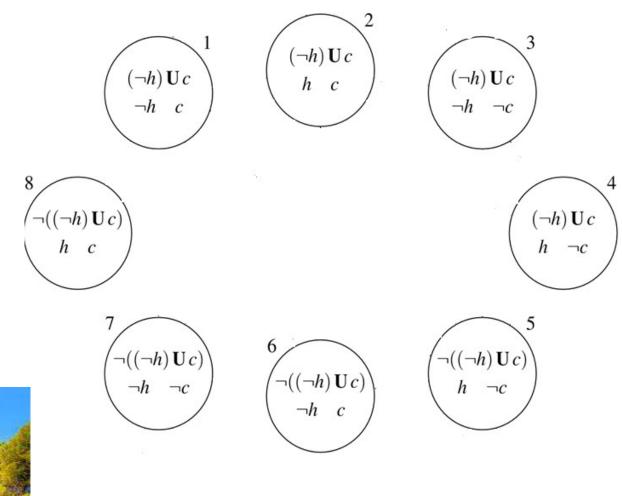
The set of all **good sets** of $cl(\varphi)$ defines the state space of \mathcal{A}_{φ}

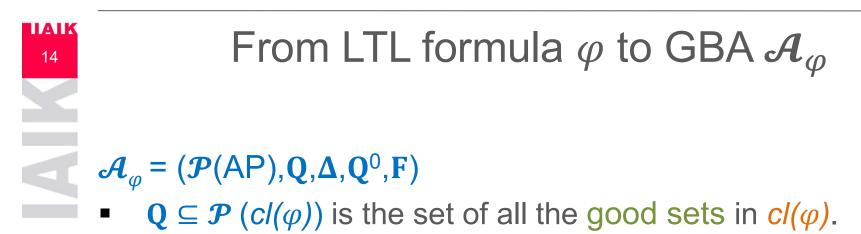
Give the state space Q of \mathcal{A}_{φ} representing $\varphi = (\neg h \cup c)$

Institute for Applied Information Processing and Communications 11.06.2021

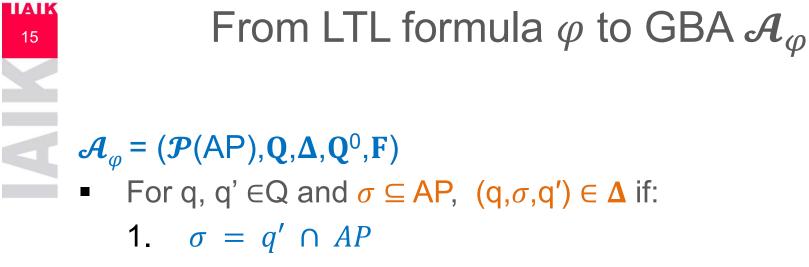
LIAIK

12





Each state of \mathcal{A}_{φ} is **labelled** with a set of properties that should be satisfied on all paths starting at that state



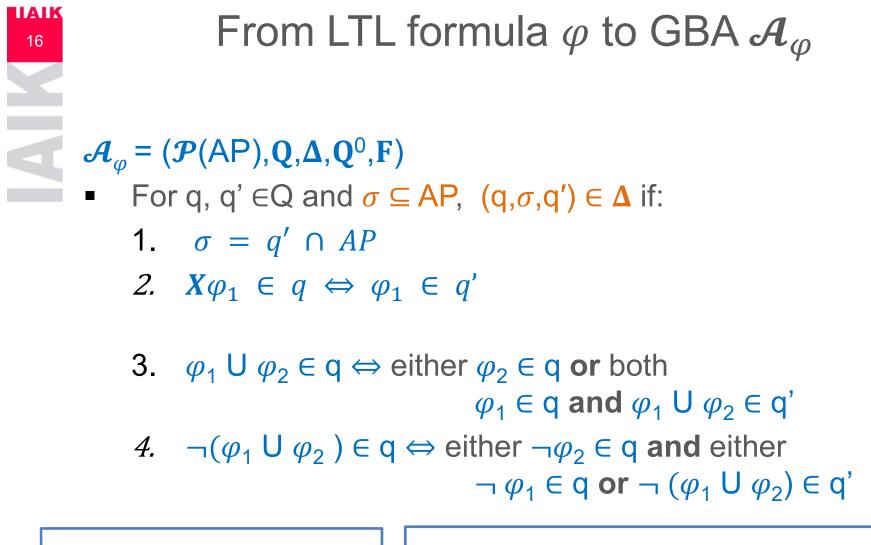
2.
$$X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$$

3.
$$\varphi_1 \cup \varphi_2 \in q \Leftrightarrow either \varphi_2 \in q \text{ or both}$$

 $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$

$$\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$$

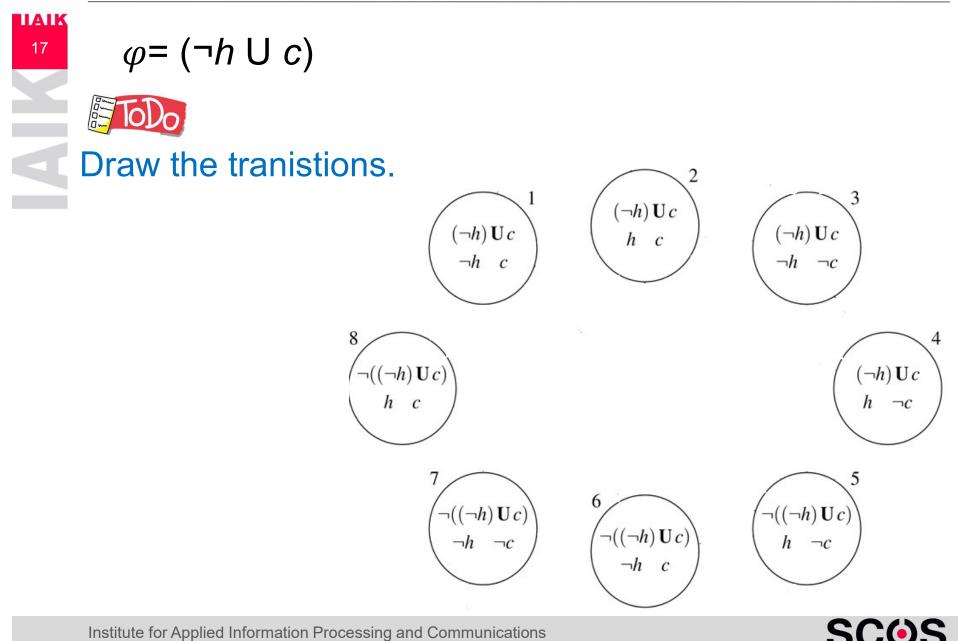
Each state of \mathcal{A}_{φ} is **labelled** with a set of properties that should be satisfied on all paths starting at that state

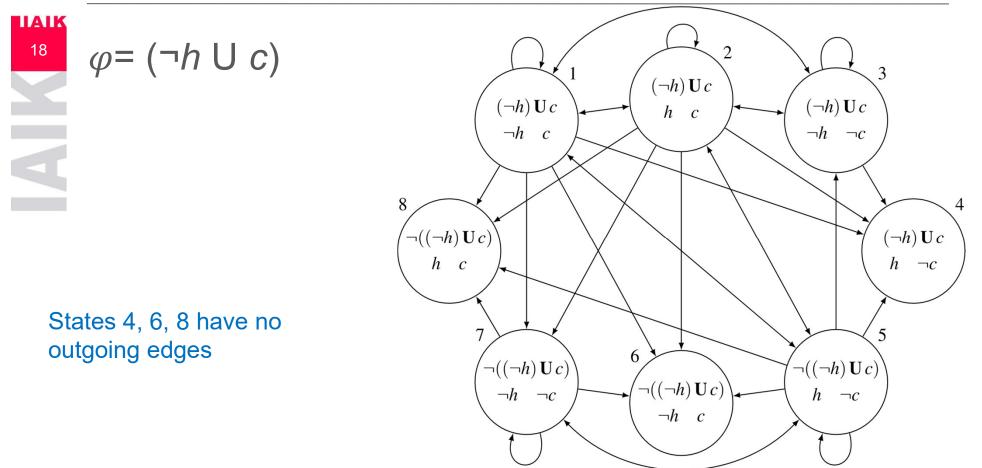


 $\neg(\varphi_1 U \varphi_2) = \neg \varphi_1 R \neg \varphi_2$

$$\varphi_1 R \varphi_2 \equiv \varphi_2 \land (\varphi_1 \lor X(\varphi_1 R \varphi_2))$$

Secure & Correct Systems





From LTL formula φ to GBA \mathcal{A}_{φ}

 $\mathbf{\mathcal{A}}_{\varphi} = (\mathbf{\mathcal{P}}(\mathsf{AP}), \mathbf{Q}, \mathbf{\Delta}, \mathbf{Q}^{0}, \mathbf{F})$

What are the initial states?

Each state of \mathcal{A}_{φ} is **labelled** with a set of properties that should be satisfied on all paths starting at that state

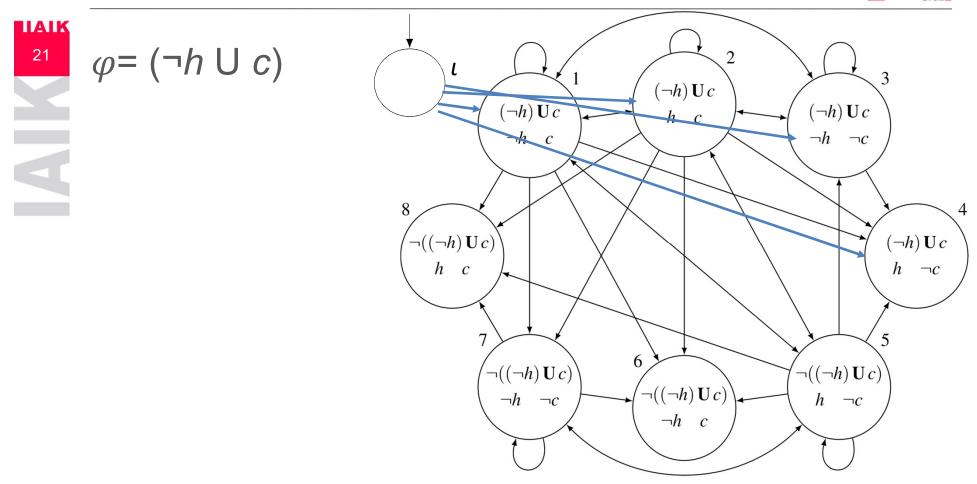
From LTL formula φ to GBA \mathcal{A}_{φ}

 $\mathcal{A}_{\varphi} = (\mathcal{P}(\mathsf{AP}), \mathbf{Q}, \mathbf{\Delta}, \{\iota\}, \mathbf{F})$

MAILORCA

- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi)) \cup \{\iota\}$ is the set of all the good sets in $cl(\varphi) \cup \{\iota\}$.
- $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in \mathbf{q} \text{ and } \sigma = q \cap AP$

Each state of \mathcal{A}_{φ} is **labelled** with a set of properties that should be satisfied on all paths starting at that state

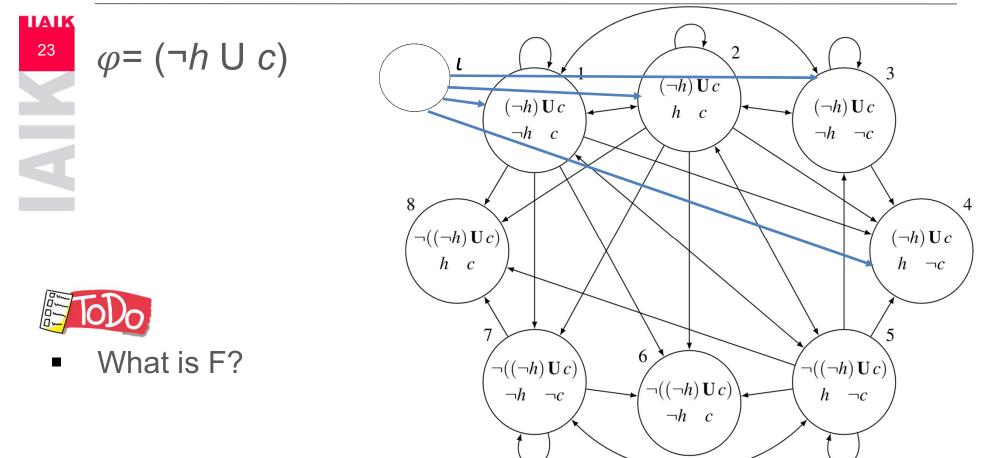


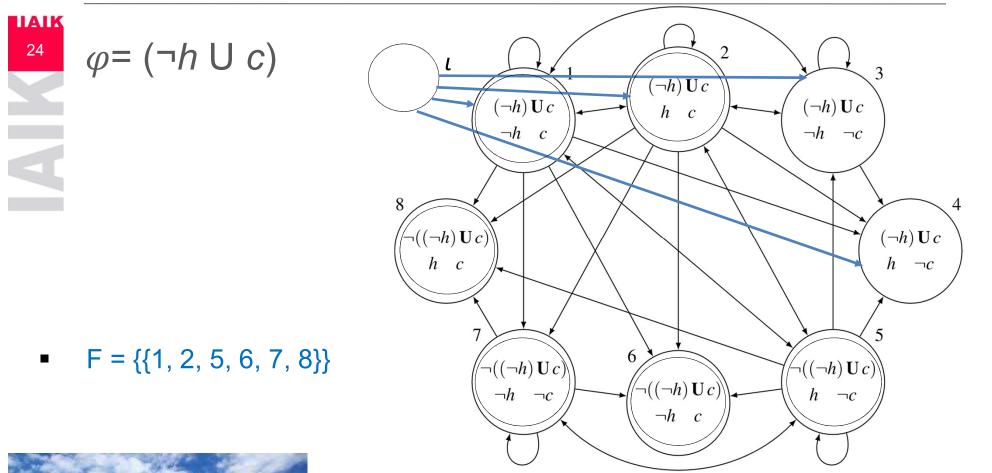
$\mathcal{A}_{\varphi} = (\mathcal{P}(\mathsf{AP}), \mathbf{Q}, \Delta, \{\iota\}, \mathbf{F})$

LIAIK

22

- **Q** ⊆ \mathcal{P} (*cl*(φ)) ∪ {**ι**} is the set of all the good sets in *cl*(φ) ∪ {**ι**}.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set
 - $F_{\varphi_1} \bigcup \varphi_2 = \{q \in \mathbf{Q} \mid \varphi \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q\}.$





LIAIK

24

From LTL formula φ to GBA \mathcal{A}_{φ}

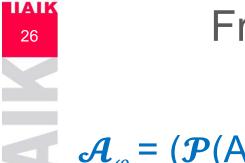
$\mathcal{A}_{\varphi} = (\mathcal{P}(\mathsf{AP}), \mathbf{Q}, \Delta, \{\iota\}, \mathbf{F})$

- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi)) \cup {\mathbf{l}}$ is the set of all the good sets in $cl(\varphi) \cup {\mathbf{l}}$.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set
 - $F_{\varphi_1} \bigcup \varphi_2 = \{q \in \mathbf{Q} \mid \varphi \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q\}.$

LIAIK

25

What is the complexity?



 $\mathcal{A}_{\varphi} = (\mathcal{P}(\mathsf{AP}), \mathbf{Q}, \Delta, \{\iota\}, \mathbf{F})$

- Q ⊆ 𝒫 (cl(φ)) ∪ {ι} is the set of all the good sets in cl(φ)
 ∪ {ι}.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set
 - $F_{\varphi_1} \bigcup \varphi_2 = \{q \in \mathbf{Q} \mid \varphi \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q\}.$
- What is the complexity?
 - \mathcal{A}_{φ} is **always exponential** in the size of φ .

Algorithm in the Book (7.9)

$\mathcal{A}_{\varphi} = (\mathsf{P}(\mathsf{AP}), \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$

- $\mathbf{Q} \subseteq \mathsf{P}(cl(\varphi))$ is the set of all the good sets in $cl(\varphi)$.
- For q, q' \in Q and $\sigma \subseteq$ AP, (q, σ ,q') $\in \Delta$ if:
 - 1. $\sigma = \mathbf{q} \cap \mathbf{AP} \rightarrow \mathbf{Push}$ labels forward
 - **2. X** $\varphi_1 \in \mathbf{q} \Leftrightarrow \varphi_1 \in \mathbf{q}'$,
 - **3.** $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{either } \varphi_2 \in q \text{ or both } \varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$
- \mathbf{Q}^0 is the set of all states $\mathbf{q} \in \mathbf{Q}$ for which $\varphi \in \mathbf{q}$.
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set $F_{\varphi_1} \cup \varphi_2 = \{q \in \mathbf{Q} \mid \varphi \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q\}.$

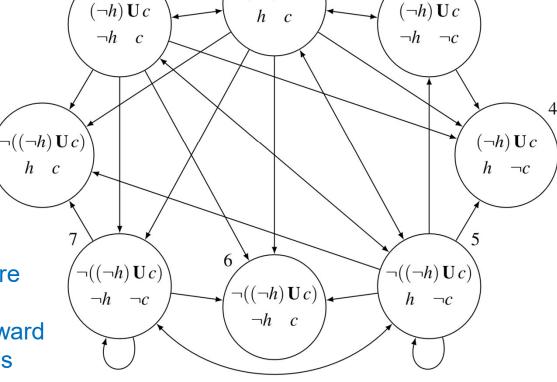
3

• F = {{1, 2, 5, 6, 7, 8}}.

Homework:

Explain why both algorithm are correct.

Why does pushing labels forward and pushing labels backwards both work in this case?



2

 $(\neg h) \mathbf{U} c$

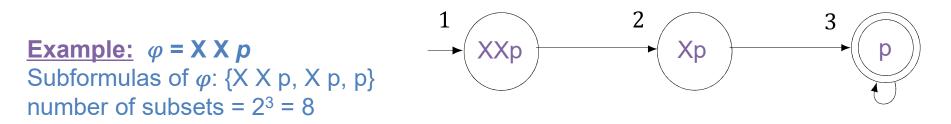
Book: Fig. 7.10

Institute for Applied Information Processing and Communications 11.06.2021

8

Efficient translation of LTL to Büchi [Gerth, Peled, Vardi and Wolper]

- \mathcal{A}_{φ} does not have to be always exponential in the size of φ (but sometimes it is).
- The idea: each state includes only subformulas that are required to be true for this state.



But: in state 1 we care only about XXp, not about Xp or p in state 2 we only care about Xp; in state 3 we only care about p ⇒ we only need three states!

Translation of LTL to Büchi automata

Given an LTL formula φ , construct a generalized Büchi automaton \mathcal{A}_{φ}

- 1. Rewrite φ in **Negation Normal Form**
 - Apply Rewriting Rules
- **2.** New Efficient Translation
 - Turn φ into generalized Büchi Automaton
- 3. Translate generalized Büchi to Büchi automaton

Rewriting

- Negated Normal Form
 - Negation appears only in front of literals
 - $\neg \neg \varphi = \varphi$

LIAIK

31

- $\neg(X\varphi) = X \neg \varphi$
- $\neg G \varphi = F \neg \varphi$
- $\neg F\varphi = G \neg \varphi$
- $\neg(\varphi U\psi) = \neg\varphi R \neg \psi$
- $\neg(\varphi R\psi) = \neg\varphi U \neg \psi$

Rewriting

- Core Algorithm only handles
 - $\neg, \land, \lor, X, U, (R)$

LIAIK

32

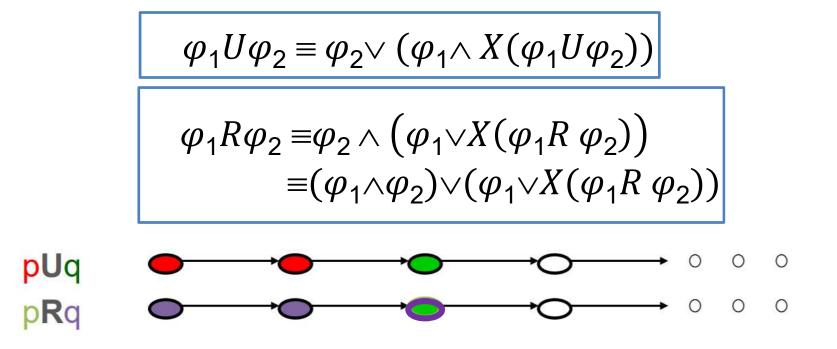
AIK

- Use rewriting Rules $\neg G\varphi = F \neg \varphi$
 - $F\varphi = true U\varphi$
 - $G\varphi = \neg F \neg \varphi = false R \varphi$

•
$$\neg(\varphi R \psi) = \neg\varphi U \neg \psi$$

Efficient translation of LTL to Büchi

- φ is written in NNF
- Until and Release can be written as fixpoints:



Efficient translation of LTL to Büchi

 $\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$

$$\varphi_1 R \varphi_2 \equiv \varphi_2 \land (\varphi_1 \lor X(\varphi_1 R \varphi_2))$$

$$\equiv (\varphi_1 \land \varphi_2) \lor (\varphi_1 \lor X(\varphi_1 R \varphi_2))$$

└ Two Observations

1. Requirements can be split

$$\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$$

Case 1 Case 2

Efficient translation of LTL to Büchi

 $\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$

$$\varphi_1 R \varphi_2 \equiv \varphi_2 \land (\varphi_1 \lor X(\varphi_1 R \varphi_2))$$

$$\equiv (\varphi_1 \land \varphi_2) \lor (\varphi_1 \lor X(\varphi_1 R \varphi_2))$$

└ Two Observations

- 1. Requirements can be split
- 2. Requirements may refer to *current* and *next* states

$$\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$$

Current State Next State

Data Structure

- Each node will store a set of properties that should be satisfied on paths starting at that state
 - New: subformulas of φ that need to be processed; subformulas need to hold from current state q
 - Now: subformulas of φ that have been processed; subformulas need to hold from current state q
 - Next: subformulas that need to hold from the next state q'
- ID: Unique identifier of the node

LIAIK

36

A A

Incoming: incoming transitions for a node

Node
ID
Incoming: New: Now: Next:

- Each node will store a set of properties that should be satisfied on paths starting at that state
 - New: subformulas of φ that need to be processed; subformulas need to hold from current state q
 - Now: subformulas of φ that have been processed; subformulas need to hold from current state q
 - Next: subformulas that need to hold from the next state q'

Incoming:	
New:	
Now:	
Next:	

ID

- Closed nodes: Set of all nodes, that are completely processed
 - New field is empty

LIAIK

37

- Nodes in closed will be the states in *A*_{\varphi}
- All nodes that must still be processed

Closed := \emptyset ; Open := ($(n_0, \{init\}, \{\varphi\}, \emptyset, \emptyset)$); // Init

while $Open \neq \emptyset$ do

Choose $q \in Open$;

if q.New = 0 then // q is fully processed Remove *q* from *Open*; Update Closed(q);

else

Choose $\psi \in q$.New; Move ψ from q.New to q.Now; Update Split(q, ψ); end if end while **define** *F*; // GBA acceptance constraints A := Build Automaton(Closed,F); return A;

end procedure

Initialisation:

Single Node in Open:

ID: n_0

Incoming: {init} New: { (A U (B U C)) } Now: Ø Next: Ø

Nodes that will evolve from n_0 are the initial states of \mathcal{A}_{ω}

Closed := Ø; *Open* := ($(n_0, \{init\}, \{\varphi\}, \emptyset, \emptyset)$); // Init

while Open≠ Ø do Choose α ⊂ Oper

Choose $q \in Open$;

if q.New = 0 then // q is fully processed Remove *q* from *Open*;

Update Closed(q);

else

Choose $\psi \in q$.New; Move ψ from q.New to q.Now; Update Split(q, ψ);

end if end while

define F; // GBA acceptance constraints A := Build Automaton(Closed,F); return A; end procedure

For each node: process sub-formulas in New one by one

- When we have $\varphi_1 \lor \varphi_2$ in the New list:
 - Split node: n1: New{ φ_1 } and n2: New{ φ_2 }

- For each node: process sub-formulas in New one by one
 - When we have $\varphi_1 \lor \varphi_2$ in the New list:
 - Split node: n1: New{ φ_1 } and n2: New{ φ_2 }
 - When we have $\varphi_1 U \varphi_2$ in the New list we will use
 - $\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$
 - Split node: n1: New{ φ_1 } Next{ $X(\varphi_1 U \varphi_2)$ } and n2: New{ φ_2 }

- For each node: process sub-formulas in New one by one
 - When we have $\varphi_1 \lor \varphi_2$ in the New list:
 - Split node: n1: New{ φ_1 } and n2: New{ φ_2 }
 - When we have $\varphi_1 U \varphi_2$ in the New list we will use
 - $\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$
 - Split node: n1: New{ φ_1 } Next{ ($\varphi_1 U \varphi_2$)} and n2: New{ φ_2 }
 - When we have $\varphi_1 R \varphi_2$ in the New list we will use
 - $\varphi_1 R \varphi_2 \equiv (\varphi_1 \land \varphi_2) \lor (\varphi_1 \lor X(\varphi_1 R \varphi_2))$
 - Split node: n1: New{ φ_2 } Next{($\varphi_1 R \ \varphi_2$)} and n2: New{ $\varphi_1, \ \varphi_2$ }

- For each node: process sub-formulas in New one by one
 - When we have $\varphi_1 \lor \varphi_2$ in the New list:
 - Split node: n1: New{ φ_1 } and n2: New{ φ_2 }
 - When we have $\varphi_1 U \varphi_2$ in the New list we will use
 - $\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$
 - Split node: n1: New{ φ_1 } Next{ ($\varphi_1 U \varphi_2$)} and n2: New{ φ_2 }
 - When we have $\varphi_1 R \varphi_2$ in the New list we will use
 - $\varphi_1 R \varphi_2 \equiv (\varphi_1 \land \varphi_2) \lor (\varphi_1 \lor X(\varphi_1 R \varphi_2))$
 - Split node: n1: New{ φ_2 } Next{($\varphi_1 R \varphi_2$)} and n2: New{ φ_1, φ_2 }

procedure $Update_Split(q, \psi)$

case of

 $\psi = p \text{ or } \psi = \neg p$: skip; // $p \in AP$

- $\varphi = \mathbf{X} \mu$: add μ to q.Next;
- $\varphi = \mu \lor \eta$: q' := Split(q); add μ to q.New; add η to q'.New;

 $\varphi = \mu \wedge \eta$: add $\{\mu, \eta\}$ to *q.New*;

 $\varphi = \mu U \eta$: q' := Split(q); add η to q.New; add $\{\mu, \mathbf{X}(\mu U \eta)\}$ to q'.New;

$$\varphi = \mu \mathbf{R} \eta$$
: $q' := Split(q)$; add $\{\mu, \eta\}$ to $q.New$; add $\{\eta, \mathbf{X}(\mu \mathbf{R} \eta)\}$ to $q'.New$;

end case;

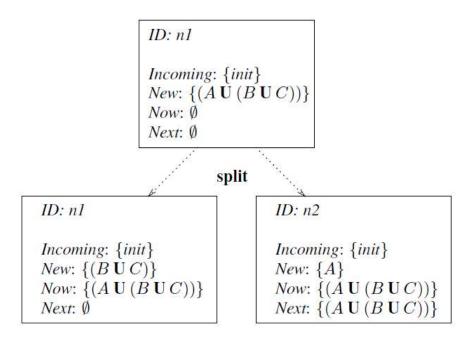
end procedure

- For each node: process sub-formulas in New one by one
 - When we have $\varphi_1 \lor \varphi_2$ in the New list:
 - Split node: n1: New{ φ_1 } and n2: New{ φ_2 }
 - When we have $\varphi_1 U \varphi_2$ in the New list we will use
 - $\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$
 - Split node: n1: New{ φ_1 } Next{ ($\varphi_1 U \varphi_2$)} and n2: New{ φ_2 }
 - When we have $\varphi_1 R \varphi_2$ in the New list we will use
 - $\varphi_1 R \varphi_2 \equiv (\varphi_1 \land \varphi_2) \lor (\varphi_1 \lor X(\varphi_1 R \varphi_2))$
 - Split node: n1: New{ φ_2 } Next{($\varphi_1 R \varphi_2$)} and n2: New{ φ_1, φ_2 }

procedure Split(q)
 create q' = (freshID, q.Incoming, q.New, q.Now, q.Next);
 // q' identical to q except for ID
 return q';
end procedure

• Process Node n1: When we have $\varphi_1 U \varphi_2$ in the New list we will use

- $\varphi_1 U \varphi_2 \equiv \varphi_2 \lor (\varphi_1 \land X(\varphi_1 U \varphi_2))$
- Split node: n1: New{ φ_2 } and n2: New{ φ_1 } Next: ($\varphi_1 U \varphi_2$)}



Closed := Ø; *Open* := ($(n_0, \{init\}, \{\varphi\}, \emptyset, \emptyset)$); // Init

while $Open \neq \emptyset$ do

Choose $q \in Open$;

if q.New = 0 then // q is fully processed

Remove *q* from *Open*;

Update Closed(q);

else

Choose $\psi \in q$.New; Move ψ from q.New to q.Now; Update Split(q, ψ);

end if end while

define F; // GBA acceptance constraints A := Build Automaton(Closed,F); return A; end procedure

Update_Closed(q)

- Applied if q.New is empty
- If a node q' with same values for Now and next exists:
 - Incomming edges of q are added to q'
- Else

LIAIK

47

- Insert q in Closed by. Create q' as possible successor.
- q'.New = q.Next

```
procedure Update_Closed(q)
                                                                                                   New: Ø
    if there is q' \in Closed such that q.Now = q'.Now and q.Next = q'.Next then
                                                                                                   Now: \{B, (B \cup C), (A \cup (B \cup C))\}
         q'.Incoming := q'.Incoming \cup q.Incoming;
                                                                                                   Next: \{(B \mathbf{U} C)\}
    else
         add q to Closed;
         create q' = (freshID, \{q\}, q.Next, \emptyset, \emptyset);
                                                                                                   ID: n4
         // Node q' is a candidate successor of q
                                                                                                   Incoming: {n3}
         add q' to Open
                                                                                                   New: \{(B \mathbf{U} C)\}
    end if
                                                                                                   Now: Ø
end procedure
                                                                                                   Next: Ø
```


ID: n3

Incoming: {init}

Closed := \emptyset ; *Open* := ($(n_0, \{init\}, \{\varphi\}, \emptyset, \emptyset)$); // Init while $Open \neq \emptyset$ do Choose $q \in Open$ Choose $q \in Open$; if *q*.*New* = 0 then // *q* is fully processed Remove *q* from *Open*; Update Closed(q); else Choose $\psi \in q$.New; Move ψ from q.New to q.Now; Update Split(q, ψ); end if end while **define** *F*; // GBA acceptance constraints

A := Build Automaton(Closed,F); return A: end procedure

Accepting States of GBA - Enforcing Eventualities

- Multiple accepting sets
 - One for each *Until* sub-formula ($\phi \cup \psi$)
 - Nodes in Closed in which either
 - The Now field doesn't contain ϕ U ψ

or

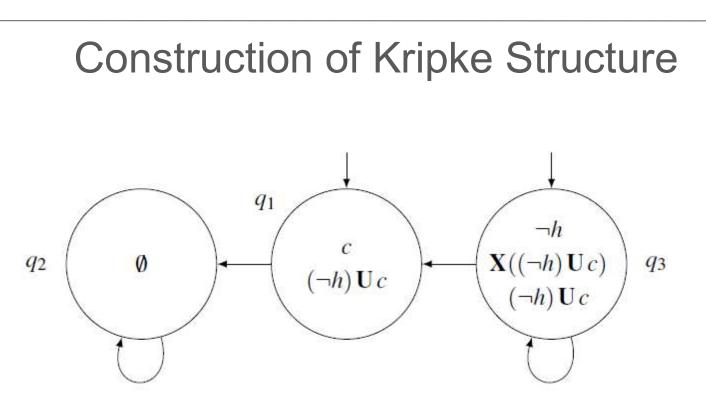
- The Now field does contain ψ

Construction of Kripke Structure

- Once open is empty
- For each node in closed
 - Create a new node with all the *Now* formulas
- Create edges between nodes using *Incoming*
- Use the set of sets of accepting states *F* from before

Construction of Kripke Structure

- The set of states S is the set of nodes in Closed.
- The set of initial states is $S_0 = \{q \in S | init \in q. Incoming\}.$
- The transition relation $R \subseteq S \times S$ is defined as follows: $(q,q') \in R$ if and only if $q \in q'$. *Incoming*.
- *AP* is the set of atomic propositions in φ . That is, $AP = \{p | p \in AP_{\varphi}\}$. Let $\overline{AP} = \{\neg p | p \in AP\}$.
- The labeling of states is L(q) = q.Now
- The generalized Büchi acceptance sets F which includes, for every subformula of φ of the form $\mu U\eta$, a set $P_{\mu}U\eta = \{q \mid \eta \in q.Now \text{ or } (\mu U\eta) \notin q.Now \}$.



The Kripke structure resulting from algorithm EfficientLTLBuchi when given the formula $(\neg h)Uc$

Institute for Applied Information Processing and Communications 11.06.2021

