
1

Bettina Könighofer

January 24, 2020

Graz University of Technology

Institute for Applied Information

Processing and Communications

Automata and LTL Model Checking

Part-2
Bettina Könighofer

Model Checking SS21 May 27th 2021

A B

CX

A A B

C

Homework 8

Intersection of Büchi Automata

01.06.2021

Institute for Applied Information Processing and Communications

2

▪ Question

▪ In every interval we first wait for 𝐅1 and then wait for 𝐅2.

▪ We ignore accepting states that don’t appear in this order.

▪ Might we miss accepting paths in 𝓑 ?

Homework 8

Intersection of Büchi Automata

01.06.2021

Institute for Applied Information Processing and Communications

3

▪ Question

▪ In every interval we first wait for 𝐅1 and then wait for 𝐅2.

▪ We ignore accepting states that don’t appear in this order.

▪ Might we miss accepting paths in 𝓑 ?

▪ Answer

▪ No. Since on an accepting path there are infinitely many

of those, ignoring finite number of them in each interval

will still lead us to the conclusion that the run is accepting

Homework 8 - Intersection of Büchi Automata

01.06.2021

Institute for Applied Information Processing and Communications

4

▪ Question

▪ How do we define the transition relation for 𝓑, if x is over

{0,1} only?

With x over {0,1,2} we had:

Homework 8 - Intersection of Büchi Automata

01.06.2021

Institute for Applied Information Processing and Communications

5

▪ Question

▪ How do we define the transition relation for 𝓑, if x is over

{0,1} only?

▪ Answer

▪ For 𝚫

▪ (2) If x=0 and q1 𝐅1 then x’=1

If x=1 and q2 𝐅2 then x’=0

Else, x’=x

▪ For 𝐅

▪ 𝐅 = 𝐅1 𝐐2 {0}

Outline

01.06.2021

Institute for Applied Information Processing and Communications

6

▪ Finite automata on finite words

▪ Automata on infinite words (Büchi automata)

▪ Deterministic vs non-deterministic Büchi automata

▪ Intersection of Büchi automata

▪ Checking emptiness of Büchi automata

▪ Generalized Büchi automata

▪ Automata and Kripke Structures

▪ Model checking using automata

▪ Translation of LTL to Büchi automata

Checking for emptiness of 𝓛(𝓑)

01.06.2021

Institute for Applied Information Processing and Communications

7

▪ An infinite run 𝛒 is accepting ⇔ it visits an accepting

state an infinite number of times.

▪ inf(𝛒) ∩ 𝐅 ≠ ∅

Checking for emptiness of 𝓛(𝓑)

01.06.2021

Institute for Applied Information Processing and Communications

8

▪ An infinite run 𝛒 is accepting ⇔ it visits an accepting

state an infinite number of times.

▪ inf(𝛒) ∩ 𝐅 ≠ ∅

▪ How to check for L(A) = ∅?

Checking for emptiness of 𝓛(𝓑)

01.06.2021

Institute for Applied Information Processing and Communications

9

▪ An infinite run 𝛒 is accepting ⇔ it visits an accepting

state an infinite number of times.

▪ inf(𝛒) ∩ 𝐅 ≠ ∅

▪ How to check for L(A) = ∅?

▪ Find a reachable accepting state on a cycle.

Non-emptiness ⇔
Existence of reachable accepting cycles

01.06.2021

Institute for Applied Information Processing and Communications

10

Lemma: Let 𝓑 =(𝚺,𝐐,𝚫,𝐐0,𝐅) be a Büchi automaton.

The following conditions are equivalent:

▪ 𝓛(𝓑) is nonempty.

▪ 𝓑 contains a strongly connected component C, which

includes an accepting state. Moreover, C is reachable

from an initial state of 𝓑.

▪ The graph induced by 𝓑 contains a path from an initial

state of 𝓑 to a state t ∈ 𝐅 and a path from t back to itself.

Example

01.06.2021

Institute for Applied Information Processing and Communications

11

▪ Is the language 𝓛(𝓑) empty?

b

a

b

a b

b

a

a

a b

r1, q2, 1

r2, q1, 2

r1, q1, 0

r2, q1, 0

r1, q2, 0

Example

01.06.2021

Institute for Applied Information Processing and Communications

12

▪ The language 𝓛(𝓑) is nonempty.

▪ 𝓛(𝓑) = {inf number of a’s and inf number of b’s}

▪ <r2,q1,2> is accepting and

reachable from <r1,q1,0> and

reachable from itself

b

a

b

a b

b

a

a

a b

r1, q2, 1

r2, q1, 2

r1, q1, 0

r2, q1, 0

r1, q2, 0

Emptiness and Accepting runs

01.06.2021

Institute for Applied Information Processing and Communications

13

▪ There can be an exponential number of cycles in a graph!

▪ But we want stay polynomial in the size of the graph…

Finding Accepting Runs

01.06.2021

Institute for Applied Information Processing and Communications

14

▪ Rather than looking for cycles, look for SCCs:

▪ A maximal Strongly Connected Component (SCC):

▪ maximal set of nodes where each node is reachable from all others.

▪ Find a reachable SCC with an accepting node.

Finding Accepting Runs

01.06.2021

Institute for Applied Information Processing and Communications

15

▪ Finding SCC’s is linear in the size of the graph.

▪ Relies on a modified DFS

▪ Record ‘finishing time’

▪ Let us recall DFS…

Depth First Search

01.06.2021

Institute for Applied Information Processing and Communications

16

Program DFS

for each initial state 𝑠0:

dfs(𝑠0)

dfs(𝑠)

for each 𝑠’ such that 𝑅(𝑠, 𝑠’):

if new(𝑠’):

dfs(𝑠’)

01.06.2021

Institute for Applied Information Processing and Communications

17

q3

q4

q2

q1

q5

q1

q1

Stack:

Hash table:

1

Mark in each node:

- Start time

- Finish time

Example DFS

01.06.2021

Institute for Applied Information Processing and Communications

18

q3

q4

q2

q1

q5

q1 q2

q1

q2

Stack:

Hash table:

1

2

Mark in each node:

- Start time

- Finish time

Example DFS

01.06.2021

Institute for Applied Information Processing and Communications

19

q3

q4

q2

q1

q5

q1 q2 q4

q1

q2

q4

Stack:

Hash table:

1

2

3

Mark in each node:

- Start time

- Finish time

Example DFS

01.06.2021

Institute for Applied Information Processing and Communications

20

q3

q4

q2

q1

q5

q1 q2 q4

q1

q2

Stack:

Hash table:

1

2

34

Mark in each node:

- Start time

- Finish time

Example DFS

01.06.2021

Institute for Applied Information Processing and Communications

21

q3

q4

q2

q1

q5

q1 q2 q4

q1

Stack:

Hash table:

1

2

34

5

Mark in each node:

- Start time

- Finish time

Example DFS

01.06.2021

Institute for Applied Information Processing and Communications

22

q3

q4

q2

q1

q5

q1 q2 q4 q3

q1

q3

Stack:

Hash table:

1

2

34

5

6

Mark in each node:

- Start time

- Finish time

Example DFS

01.06.2021

Institute for Applied Information Processing and Communications

23

q3

q4

q2

q1

q5

q1 q2 q4 q3

q1

Stack:

Hash table:

1

2

34

5

6 7

8

Mark in each node:

- Start time

- Finish time

Example DFS

An algorithm for finding SCCs

01.06.2021

Institute for Applied Information Processing and Communications

24

▪ The transpose of G, written GT, is derived from G by

reversing its edges.

G GT

An algorithm for finding SCCs

01.06.2021

Institute for Applied Information Processing and Communications

25

1.Call DFS(G) to compute finish[v] for each vertex in G.

2.Call Modified-DFS(GT)

▪ main loop of processes vertices in order of

decreasing finish[v]

3.Each tree of Modified-DFS(GT) is a SCC of G.

01.06.2021

Institute for Applied Information Processing and Communications

26

Compute

DFS Finish

times

Example

𝑣1 𝑣2 𝑣3 𝑣4

𝑣8𝑣5 𝑣6 𝑣7

01.06.2021

Institute for Applied Information Processing and Communications

27

109

1 2 3

4

5 6

7

8

11

12

13
14

1516

DFS Finish

times

Example

𝑣1 𝑣2 𝑣3 𝑣4

𝑣8𝑣5 𝑣6 𝑣7

01.06.2021

Institute for Applied Information Processing and Communications

28

GT

15

6

7

11

1216

Swapped the direction of edges

1014

Example

01.06.2021

Institute for Applied Information Processing and Communications

29

6

7

10
11

12

14

1516

GT

DFS from decreasing finish times: every tree is an SCC.

Example

01.06.2021

Institute for Applied Information Processing and Communications

30

6

7

10
11

12

14

1516

GT

DFS from decreasing finish times: every tree is an SCC.

Example

01.06.2021

Institute for Applied Information Processing and Communications

31

6

7

10
11

12

14

1516

GT

DFS from decreasing finish times: every tree is an SCC.

Example

01.06.2021

Institute for Applied Information Processing and Communications

32

6

7

10
11

12

14

1516

GT

DFS from decreasing finish times: every tree is an SCC.

Example

An algorithm for finding SCCs

01.06.2021

Institute for Applied Information Processing and Communications

33

1.Call DFS(G) to compute finish[v] for each vertex in G.

2.Call Modified-DFS(GT)

▪ main loop of processes vertices in order of

decreasing finish[v]

3.Each tree of Modified-DFS(GT) is a SCC of G.

▪ What is the worst-case complexity in time and space?

An algorithm for finding SCCs

01.06.2021

Institute for Applied Information Processing and Communications

34

1.Call DFS(G) to compute finish[v] for each vertex in G.

2.Call Modified-DFS(GT)

▪ main loop of processes vertices in order of

decreasing finish[v]

3.Each tree of Modified-DFS(GT) is a SCC of G.

▪ What is the worst-case complexity in time and space?

O(|𝓑|)

Double DFS-Algorithm

01.06.2021

Institute for Applied Information Processing and Communications

35

▪ Better alternative algorithm

▪ Less memory

▪ Saves the accepting path

Double DFS-Algorithm

01.06.2021

Institute for Applied Information Processing and Communications

36

▪ The first DFS finds a state f ∈ 𝐅

▪ The second DFS attempts to close a loop around it.

▪ The trick is:

▪ how to avoid exploring the entire graph

for each accepting state?

dfs1

dfs2

The Double-DFS algorithm

01.06.2021

Institute for Applied Information Processing and Communications

37

DFS1(s) {

push(s,Stack1);

hash(s,Table1);

for each t ∈ Succ (s) do {

if t ∉ Table1 then DFS1(t);

}

if s ∈ F then DFS2(s);

pop(Stack1);

}

DFS2(s) {

push(s, Stack2);

hash(s, Table2) ;

for each t ∈ Succ (s) do {

if t is on Stack1 exit(“not empty”);

else if t ∉ Table2 then DFS2(t)

}

pop(Stack2);

}

Upon finding an accepting cycle, Stack1, Stack2, t, determines a

witness: an accepting cycle reached from an initial state.

The Double-DFS algorithm

01.06.2021

Institute for Applied Information Processing and Communications

38

procedure Main() {

for each 𝑠 ∈ 𝑆0 do {

if s ∉ Table1 then DFS1(s);

}

output(“empty”);

exit;

}

DFS1(s) {

push(s,Stack1);

hash(s,Table1);

for each t ∈ Succ (s) do {

if t ∉ Table1 then DFS1(t);

}

if s ∈ F then DFS2(s);

pop(Stack1);

}

DFS2(s) {

push(s, Stack2);

hash(s, Table2) ;

for each t ∈ Succ (s) do {

if t is on Stack1 exit(“not empty”);

else if t ∉ Table2 then DFS2(t)

}

pop(Stack2);

}

Upon finding an accepting cycle, Stack1, Stack2, t, determines a

witness: an accepting cycle reached from an initial state.

Input: A

Initialize: Stack1:={} , Stack2:={}

Table1:={} , Table2:={}

Double DFS-Algorithm

01.06.2021

Institute for Applied Information Processing and Communications

39

▪ The first DFS finds a state f ∈ 𝐅

▪ The second DFS attempts to close a loop around it.

▪ The trick is:

▪ how to avoid exploring the entire graph

for each accepting state?

dfs1

dfs2

dfs1

1 2 3 4

8

5 6 7

Stack 1 = {}

Table 1 = {}

The Double DFS algorithm40

01.06.2021

Institute for Applied Information Processing and Communications

dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1}

Table 1 = {1}

The Double DFS algorithm41

01.06.2021

Institute for Applied Information Processing and Communications

dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1,2}

Table 1 = {1,2}

The Double DFS algorithm42

01.06.2021

Institute for Applied Information Processing and Communications

dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 6}

Table 1 = {1 – 6}

The Double DFS algorithm43

01.06.2021

Institute for Applied Information Processing and Communications

dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 7}

Table 1 = {1 – 7}

The Double DFS algorithm

Institute for Applied Information Processing and Communications

01.06.2021

44

dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 6}

Table 1 = {1 – 7}

For the first time we identified an accepting state for which all the

successors were already explored. Now it’s DFS2’s turn to try to close

the loop.

The Double DFS algorithm

Institute for Applied Information Processing and Communications

01.06.2021

45

dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 6}

Table 1 = {1 – 7}

For the first time we identified an accepting state for which all the

successors were already explored. Now it’s DFS2’s turn to try to close

the loop.

The Double DFS algorithm

Institute for Applied Information Processing and Communications

01.06.2021

46

Stack 2 = {6}

Table 2 = {6}

dfs2

1 2 3 4

8

5 6 7

Stack 1 = {1 – 6} Stack 2 = {6,7}

Table 1 = {1 – 7} Table 2 = {6,7}

The Double DFS algorithm

Institute for Applied Information Processing and Communications

01.06.2021

47

dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 4} Stack 2 = {}

Table 1 = {1 – 7} Table 2 = {6,7}

Backtracking, 4 still has successors…

The Double DFS algorithm

Institute for Applied Information Processing and Communications

01.06.2021

48

dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 4,8} Stack 2 = {}

Table 1 = {1 – 8} Table 2 = {6,7}

The Double DFS algorithm

Institute for Applied Information Processing and Communications

01.06.2021

49

dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 4} Stack 2 = {}

Table 1 = {1 – 8} Table 2 = {6,7}

Again we identified an accepting state for which all successors were

already explored. Now it’s DFS’2 turn to try to close the loop.

The Double DFS algorithm

Institute for Applied Information Processing and Communications

01.06.2021

50

dfs2

1 2 3 4

8

5 6 7

Stack 1 = {1 – 4} Stack 2 = {4,5}

Table 1 = {1 – 8} Table 2 = {4 - 7}

No point continuing to what is already in Table 2 (why?)

The Double DFS algorithm

Institute for Applied Information Processing and Communications

01.06.2021

51

The Double DFS algorithm

Institute for Applied Information Processing and Communications

01.06.2021

52

dfs2

1 2 3 4

8

5 6 7

Stack 1 = {1 – 4} Stack 2 = {4,8}

Table 1 = {1 – 8} Table 2 = {4 – 8}

Bingo! Found a cycle !

(DFS2 progresses to node 3 which is on Stack1)

Correctness of the Double-DFS algorithm

01.06.2021

Institute for Applied Information Processing and Communications

53

▪ The Double-DFS algorithm outputs “empty” ⇔ 𝓛(𝓑) is empty.

▪ If Double-DFS outputs “not empty”,

then content of Stack1 + Stack2 + t is a word in 𝓛(𝓑).

Complexity of Double-DFS

01.06.2021

Institute for Applied Information Processing and Communications

54

DFS1(s) {

push(s,Stack1);

hash(s,Table1);

for each t ∈ Succ (s) do {

if t ∉ Table1 then DFS1(t);

}

if s ∈ F then DFS2(s);

pop(Stack1);

}

DFS2(s) {

push(s, Stack2);

hash(s, Table2) ;

for each t ∈ Succ (s) do {

if t is on Stack1 exit(“not empty”);

else if t ∉ Table2 then DFS2(t)

}

pop(Stack2);

}

▪ What is the worst-case complexity in time and space?

Complexity of Double-DFS

01.06.2021

Institute for Applied Information Processing and Communications

55

DFS1(s) {

push(s,Stack1);

hash(s,Table1);

for each t ∈ Succ (s) do {

if t ∉ Table1 then DFS1(t);

}

if s ∈ F then DFS2(s);

pop(Stack1);

}

DFS2(s) {

push(s, Stack2);

hash(s, Table2) ;

for each t ∈ Succ (s) do {

if t is on Stack1 exit(“not empty”);

else if t ∉ Table2 then DFS2(t)

}

pop(Stack2);

}

▪ What is the worst-case complexity in time and space?

▪ O(|𝓑|)

Double-DFS

01.06.2021

Institute for Applied Information Processing and Communications

56

1

2

3 4

5

▪ Apply the DDFS algorithm:

Double-DFS

01.06.2021

Institute for Applied Information Processing and Communications

57

1

2

3 4

5

▪ Apply the DDFS algorithm:

Stack 1 = {1,2,3,4,5} Stack 2 = {5} t=3

Table 1 = {1,2,3,4,5} Table 2 = {5}

Outline

01.06.2021

Institute for Applied Information Processing and Communications

58

▪ Finite automata on finite words

▪ Automata on infinite words (Büchi automata)

▪ Deterministic vs non-deterministic Büchi automata

▪ Intersection of Büchi automata

▪ Checking emptiness of Büchi automata

▪ Generalized Büchi automata

▪ Automata and Kripke Structures

▪ Model checking using automata

▪ Translation of LTL to Büchi automata

Generalized Büchi automata

01.06.2021

Institute for Applied Information Processing and Communications

59

▪ Have several sets of accepting states

▪ 𝓑 =(𝚺,𝐐,𝚫,𝐐0,𝐅) is a generalized Büchi automaton:

▪ 𝐅 = {P1, …, Pk}, where for every 1 ≤ i ≤ k, Pi ⊆ Q

▪ A run ρ of 𝓑 is accepting if for each Pi ∈ 𝐅, inf(ρ) ∩ Pi ≠ ∅

Translation from Generalized Büchi to Büchi

01.06.2021

Institute for Applied Information Processing and Communications

60

▪ Given 𝓑 = (𝚺,𝐐1,𝚫1,𝐐1
0,𝐅1) with 𝐅 = {P1, …, Pk}

▪ How does it work to construct a Büchi automaton 𝓑’

Translation from Generalized Büchi to Büchi

01.06.2021

Institute for Applied Information Processing and Communications

61

▪ 𝓑 = (𝚺,𝐐1,𝚫1,𝐐1
0,𝐅1) with 𝐅 = {P1, …, Pk}

▪ 𝓑’ = (𝚺, 𝐐×{0,1,…,k}, 𝚫’,𝐐0x0, 𝐐×k) with:

Translation from Generalized Büchi to Büchi

01.06.2021

Institute for Applied Information Processing and Communications

62

▪ 𝓑 = (𝚺,𝐐1,𝚫1,𝐐1
0,𝐅1) with 𝐅 = {P1, …, Pk}

▪ 𝓑’ = (𝚺, 𝐐×{0,1,…,k}, 𝚫’,𝐐0x0, 𝐐×k) with:

▪ The transition relation 𝚫’:

((q,x),a,(q′,y)) ∈ 𝚫 ′ when (q,a,q′) ∈ 𝚫 and x and y are as follows:

▪ If q′ ∈ Pi and x=i, then y=i+1 for i<k

▪ If x=k, then y=0.

▪ Otherwise, x = y.

Translation from Generalized Büchi to Büchi

01.06.2021

Institute for Applied Information Processing and Communications

63

▪ 𝓑 = (𝚺,𝐐1,𝚫1,𝐐1
0,𝐅1) with 𝐅 = {P1, …, Pk}

▪ 𝓑’ = (𝚺, 𝐐×{0,1,…,k}, 𝚫’,𝐐0x0, 𝐐×k) with:

▪ The transition relation 𝚫’:

((q,x),a,(q′,y)) ∈ 𝚫 ′ when (q,a,q′) ∈ 𝚫 and x and y are as follows:

▪ If q′ ∈ Pi and x=i, then y=i+1 for i<k

▪ If x=k, then y=0.

▪ Otherwise, x = y.

▪ Size of 𝓑’ = (size of 𝓑)×(k+1)

Outline

01.06.2021

Institute for Applied Information Processing and Communications

64

▪ Finite automata on finite words

▪ Automata on infinite words (Büchi automata)

▪ Deterministic vs non-deterministic Büchi automata

▪ Intersection of Büchi automata

▪ Checking emptiness of Büchi automata

▪ Generalized Büchi automata

▪ Automata and Kripke Structures

▪ Model checking using automata

▪ Translation of LTL to Büchi automata

Kripke Structure 𝐌 to Büchi Automaton 𝓐𝐌

01.06.2021

Institute for Applied Information Processing and Communications

65

▪ Move labels to transitions

▪ All states are accepting

▪ What about initial states?

p,q p

q s2

ι

{ p, q} { p}

{q}{ p, q}

{ p}

{ p, q}s1s0

s0 s1

s2𝐌: 𝓐𝐌 :

Kripke Structure 𝐌 to Büchi Automaton 𝓐𝐌

01.06.2021

Institute for Applied Information Processing and Communications

66

▪ Move labels to transitions

▪ All states are accepting

p,q p

q s2

ι

{ p, q} { p}

{q}{ p, q}

{ p}

{ p, q}s1s0

s0 s1

s2𝐌: 𝓐𝐌 :

Automata and Kripke Structures

01.06.2021

Institute for Applied Information Processing and Communications

67

𝐌 = (𝐒, 𝐒0, 𝐑, AP, 𝐋) ⇒ 𝓐𝐌 = (𝚺, 𝐒∪{𝛊}, 𝚫, {ι}, 𝐒∪{𝛊}) ,

where 𝚺 = P(AP).

p,q p

q s2

ι

{p, q} {p}

{q}{p, q}

{p}

{p, q}s1s0

s0 s1

s2𝐌: 𝓐𝐌 :

Automata and Kripke Structures

01.06.2021

Institute for Applied Information Processing and Communications

68

𝐌 = (𝐒, 𝐒0, 𝐑, AP, 𝐋) ⇒ 𝓐𝐌 = (𝚺, 𝐒∪{𝛊}, 𝚫, {𝛊}, 𝐒∪{𝛊}) ,

where 𝚺 = P(AP).

▪ (s,α,s′) ∈ 𝚫 for s,s′ ∈ 𝐒⇔ (s,s′) ∈ R and α = 𝐋(s′)

p,q p

q s2

ι

{p, q} {p}

{q}{p, q}

{p}

{p, q}s1s0

s0 s1

s2𝐌: 𝓐𝐌 :

Automata and Kripke Structures

01.06.2021

Institute for Applied Information Processing and Communications

69

𝐌 = (𝐒, 𝐒0, 𝐑, AP, 𝐋) ⇒ 𝓐𝐌 = (𝚺, 𝐒∪{𝛊}, 𝚫, {𝛊}, 𝐒∪{𝛊}) ,

where 𝚺 = P(AP).

▪ (s,α,s′) ∈ 𝚫 for s,s′ ∈ 𝐒⇔ (s,s′) ∈ R and α = 𝐋(s′)

▪ (𝛊,α,s) ∈ 𝚫⇔ s ∈ 𝐒0 and α = 𝐋(s)

p,q p

q s2

ι

{p, q} {p}

{q}{p, q}

{p}

{p, q}s1s0

s0 s1

s2𝐌: 𝓐𝐌 :

Outline

01.06.2021

Institute for Applied Information Processing and Communications

70

▪ Finite automata on finite words

▪ Automata on infinite words (Büchi automata)

▪ Deterministic vs non-deterministic Büchi automata

▪ Intersection of Büchi automata

▪ Checking emptiness of Büchi automata

▪ Generalized Büchi automata

▪ Automata and Kripke Structures

▪ Model checking using automata

▪ Translation of LTL to Büchi automata

Model Checking when

system 𝓐 and spec 𝓢 are given as Büchi automata

01.06.2021

Institute for Applied Information Processing and Communications

71

▪ 𝓐 satisfies 𝓢 if 𝓛(𝓐) ⊆ 𝓛(𝓢)

All possible sequences

Sequences satisfying 𝓢

Computations of 𝓐

Model Checking when

System 𝓐 and Spec 𝓢 are given as Büchi automata

01.06.2021

Institute for Applied Information Processing and Communications

72

▪ 𝓐 does not satisfy 𝓢 if 𝓛(𝓐) ⊈ 𝓛(𝓢)

All possible sequences

Sequences satisfying 𝓢

Computations of 𝓐

Counter-

examples

Model Checking when

system 𝓐 and spec 𝓢 are given as Büchi automata

01.06.2021

Institute for Applied Information Processing and Communications

73

▪ Check whether 𝓛(𝓐) ⊆ 𝓛(𝓢)

▪ Equivalent:

𝓛(𝓐) ⊈ 𝓛(𝓢) ≡ 𝓛(𝓐) ∩ 𝓛(ഥ𝓢) ≠ ∅

𝓛(𝓐) ⊆ 𝓛(𝓢) 𝓛(𝓐) ⊈ 𝓛(𝓢) ≡ 𝓛(𝓐) ∩ 𝓛(ഥ𝓢) ≠ ∅

Model Checking – suggested algorithm

1. Complement 𝓢. The resulting Büchi automaton is ഥ𝓢

2. Construct the automaton 𝓑 with 𝓛(𝓑) = 𝓛(𝓐) ∩ 𝓛(ഥ𝓢)

3. If 𝓛(𝓑) = ∅ ⇒𝓐 satisfies 𝓢

4. Otherwise, a word 𝑣 ∙ 𝑤𝜔 ∈ 𝓛(𝓑) is a counterexample

▪ a computation in 𝓐 that does not satisfy 𝓢

Institute for Applied Information Processing and Communications

01.06.2021

74

✓
✓

✓

very hard!

How can we avoid building the complement of 𝓢?

Model Checking of LTL
given an LTL property 𝜑 and a Kripke structure M

check whether M ⊨ 𝜑

1. Construct ¬𝜑

2. Construct a Büchi automaton 𝓢¬𝜑

3. Translate M to an automaton 𝓐.

4. Construct the automaton 𝓑 with 𝓛(𝓑) = 𝓛(𝓐) ∩ 𝓛(𝓢¬𝜑)

5. If 𝓛(𝓑) = ∅ ⇒𝓐 satisfies 𝜑

6. Otherwise, a word 𝑣 ∙ 𝑤𝜔 ∈ 𝓛(𝓑) is a counterexample

▪ a computation in M that does not satisfy 𝜑

Institute for Applied Information Processing and Communications

01.06.2021

75

next topic

01.06.2021

Institute for Applied Information Processing and Communications

76

