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Intersection of Büchi Automata

01.06.2021

Institute for Applied Information Processing and Communications

2

▪ Question

▪ In every interval we first wait for 𝐅1 and then wait for 𝐅2.

▪ We ignore accepting states that don’t appear in this order.

▪ Might we miss accepting paths in 𝓑 ?
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▪ Question

▪ In every interval we first wait for 𝐅1 and then wait for 𝐅2.

▪ We ignore accepting states that don’t appear in this order.

▪ Might we miss accepting paths in 𝓑 ?

▪ Answer

▪ No. Since on an accepting path there are infinitely many 

of those, ignoring finite number of them in each interval 

will still lead us to the conclusion that the run is accepting



Homework 8 - Intersection of Büchi Automata

01.06.2021

Institute for Applied Information Processing and Communications

4

▪ Question

▪ How do we define the transition relation for 𝓑, if x is over 

{0,1} only?

With x over {0,1,2} we had: 
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▪ Question

▪ How do we define the transition relation for 𝓑, if x is over 

{0,1} only?

▪ Answer

▪ For 𝚫

▪ (2) If x=0 and q1 𝐅1 then x’=1

If x=1 and q2 𝐅2 then x’=0

Else, x’=x

▪ For 𝐅

▪ 𝐅 = 𝐅1  𝐐2  {0}



Outline
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▪ Finite automata on finite words

▪ Automata on infinite words (Büchi automata)

▪ Deterministic vs non-deterministic Büchi automata

▪ Intersection of Büchi automata

▪ Checking emptiness of Büchi automata

▪ Generalized Büchi automata

▪ Automata and Kripke Structures

▪ Model checking using automata

▪ Translation of LTL to Büchi automata
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▪ An infinite run 𝛒 is accepting ⇔ it visits an accepting 

state an infinite number of times.

▪ inf(𝛒) ∩ 𝐅 ≠ ∅
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▪ An infinite run 𝛒 is accepting ⇔ it visits an accepting 

state an infinite number of times.

▪ inf(𝛒) ∩ 𝐅 ≠ ∅

▪ How to check for L(A) = ∅?
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▪ An infinite run 𝛒 is accepting ⇔ it visits an accepting 

state an infinite number of times.

▪ inf(𝛒) ∩ 𝐅 ≠ ∅

▪ How to check for L(A) = ∅?

▪ Find a reachable accepting state on a cycle.
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Lemma: Let 𝓑 =(𝚺,𝐐,𝚫,𝐐0,𝐅) be a Büchi automaton. 

The following conditions are equivalent:

▪ 𝓛(𝓑) is nonempty.

▪ 𝓑 contains a strongly connected component C, which 

includes an accepting state. Moreover, C is reachable 

from an initial state of 𝓑.

▪ The graph induced by 𝓑 contains a path from an initial 

state of 𝓑 to a state t ∈ 𝐅 and a path from t back to itself.
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▪ Is the language 𝓛(𝓑) empty?

b

a

b

a b

b

a

a

a b

r1, q2, 1

r2, q1, 2

r1, q1, 0

r2, q1, 0

r1, q2, 0
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▪ The language 𝓛(𝓑) is nonempty.

▪ 𝓛(𝓑) = {inf number of a’s and inf number of b’s}

▪ <r2,q1,2> is accepting and

reachable from <r1,q1,0> and

reachable from itself

b

a

b

a b

b

a

a

a b

r1, q2, 1

r2, q1, 2

r1, q1, 0

r2, q1, 0

r1, q2, 0
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▪ There can be an exponential number of cycles in a graph!

▪ But we want stay polynomial in the size of the graph…
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▪ Rather than looking for cycles, look for SCCs: 

▪ A maximal Strongly Connected Component (SCC): 

▪ maximal set of nodes where each node is reachable from all others.

▪ Find a reachable SCC with an accepting node.
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▪ Finding SCC’s is linear in the size of the graph.

▪ Relies on a modified DFS

▪ Record ‘finishing time’

▪ Let us recall DFS…



Depth First Search

01.06.2021

Institute for Applied Information Processing and Communications

16

Program DFS

for each initial state 𝑠0:

dfs(𝑠0)

dfs(𝑠)

for each 𝑠’ such that 𝑅(𝑠, 𝑠’):

if new(𝑠’):

dfs(𝑠’)
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q3

q4

q2

q1

q5

q1

q1

Stack:

Hash table:

1

Mark in each node:

- Start time

- Finish time

Example DFS
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q3

q4

q2

q1

q5

q1  q2

q1

q2

Stack:

Hash table:

1

2

Mark in each node:

- Start time

- Finish time

Example DFS
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q3

q4

q2

q1

q5

q1  q2 q4

q1

q2

q4

Stack:

Hash table:

1

2

3

Mark in each node:

- Start time

- Finish time

Example DFS
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q3

q4

q2

q1

q5

q1  q2  q4

q1

q2

Stack:

Hash table:

1

2

34

Mark in each node:

- Start time

- Finish time

Example DFS
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q3

q4

q2

q1

q5

q1  q2  q4

q1

Stack:

Hash table:

1

2

34

5

Mark in each node:

- Start time

- Finish time

Example DFS
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q3

q4

q2

q1

q5

q1  q2  q4  q3

q1

q3

Stack:

Hash table:

1

2

34

5

6

Mark in each node:

- Start time

- Finish time

Example DFS
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q3

q4

q2

q1

q5

q1  q2  q4  q3

q1

Stack:

Hash table:

1

2

34

5

6 7

8

Mark in each node:

- Start time

- Finish time

Example DFS
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▪ The transpose of G, written GT, is derived from G by 

reversing its edges. 

G GT
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1.Call DFS(G) to compute finish[v] for each vertex in G.

2.Call Modified-DFS(GT)

▪ main loop of processes vertices in order of 

decreasing finish[v]

3.Each tree of Modified-DFS(GT) is a SCC of G.
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Compute 

DFS Finish

times

Example

𝑣1 𝑣2 𝑣3 𝑣4

𝑣8𝑣5 𝑣6 𝑣7
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109

1 2 3

4

5 6

7

8

11

12

13
14

1516

DFS Finish

times

Example

𝑣1 𝑣2 𝑣3 𝑣4

𝑣8𝑣5 𝑣6 𝑣7
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GT

15

6

7

11

1216

Swapped the direction of edges

1014

Example
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6

7

10
11

12

14

1516

GT

DFS from decreasing finish times: every tree is an SCC.

Example
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1516

GT

DFS from decreasing finish times: every tree is an SCC.

Example
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6
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1516

GT

DFS from decreasing finish times: every tree is an SCC.

Example
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14

1516

GT

DFS from decreasing finish times: every tree is an SCC.

Example
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1.Call DFS(G) to compute finish[v] for each vertex in G.

2.Call Modified-DFS(GT)

▪ main loop of processes vertices in order of 

decreasing finish[v]

3.Each tree of Modified-DFS(GT) is a SCC of G.

▪ What is the worst-case complexity in time and space?
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1.Call DFS(G) to compute finish[v] for each vertex in G.

2.Call Modified-DFS(GT)

▪ main loop of processes vertices in order of 

decreasing finish[v]

3.Each tree of Modified-DFS(GT) is a SCC of G.

▪ What is the worst-case complexity in time and space?

O(|𝓑|)
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▪ Better alternative algorithm

▪ Less memory 

▪ Saves the accepting path
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▪ The first DFS finds a state f ∈ 𝐅

▪ The second DFS attempts to close a loop around it.

▪ The trick is: 

▪ how to avoid exploring the entire graph 

for each accepting state?

dfs1

dfs2
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DFS1(s)  {    

push(s,Stack1); 

hash(s,Table1);

for each t ∈ Succ (s) do {

if t ∉ Table1 then DFS1(t);

}

if s ∈ F then DFS2(s); 

pop(Stack1); 

}

DFS2(s) { 

push(s, Stack2);

hash(s, Table2) ;

for each t ∈ Succ (s) do {

if t is on Stack1 exit(“not empty”);

else if t ∉ Table2 then DFS2(t)     

}

pop( Stack2); 

} 

Upon finding an accepting cycle, Stack1, Stack2, t, determines a

witness: an accepting cycle reached from an initial state.
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procedure Main() {

for each 𝑠 ∈ 𝑆0 do {

if s ∉ Table1  then DFS1(s); 

}

output(“empty”);

exit;

}

DFS1(s)  {    

push(s,Stack1); 

hash(s,Table1);

for each t ∈ Succ (s) do {

if t ∉ Table1 then DFS1(t);

}

if s ∈ F then DFS2(s); 

pop(Stack1); 

}

DFS2(s) { 

push(s, Stack2);

hash(s, Table2) ;

for each t ∈ Succ (s) do {

if t is on Stack1 exit(“not empty”);

else if t ∉ Table2 then DFS2(t)     

}

pop( Stack2); 

} 

Upon finding an accepting cycle, Stack1, Stack2, t, determines a

witness: an accepting cycle reached from an initial state.

Input: A

Initialize:  Stack1:={} , Stack2:={}

Table1:={} , Table2:={}
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▪ The first DFS finds a state f ∈ 𝐅

▪ The second DFS attempts to close a loop around it.

▪ The trick is: 

▪ how to avoid exploring the entire graph 

for each accepting state?

dfs1

dfs2



dfs1

1 2 3 4

8

5 6 7

Stack 1 = {}

Table 1 = {}

The Double DFS algorithm40
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dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1}

Table 1 = {1}

The Double DFS algorithm41
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dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1,2}

Table 1 = {1,2}

The Double DFS algorithm42
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dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 6}

Table 1 = {1 – 6}

The Double DFS algorithm43
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dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 7}

Table 1 = {1 – 7}

The Double DFS algorithm
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dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 6}

Table 1 = {1 – 7}

For the first time we identified an accepting state for which all the 

successors were already explored. Now it’s DFS2’s turn to try to close 

the loop.

The Double DFS algorithm

Institute for Applied Information Processing and Communications
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dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 6}

Table 1 = {1 – 7}

For the first time we identified an accepting state for which all the 

successors were already explored. Now it’s DFS2’s turn to try to close 

the loop.

The Double DFS algorithm
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Stack 2 = {6}

Table 2 = {6}



dfs2

1 2 3 4

8

5 6 7

Stack 1 = {1 – 6} Stack 2 = {6,7}

Table 1 = {1 – 7} Table 2 = {6,7}

The Double DFS algorithm
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dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 4} Stack 2 = {}

Table 1 = {1 – 7} Table 2 = {6,7}

Backtracking, 4 still has successors…

The Double DFS algorithm
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dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 4,8} Stack 2 = {}

Table 1 = {1 – 8} Table 2 = {6,7}

The Double DFS algorithm

Institute for Applied Information Processing and Communications
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dfs1

1 2 3 4

8

5 6 7

Stack 1 = {1 – 4} Stack 2 = {}

Table 1 = {1 – 8} Table 2 = {6,7}

Again we identified an accepting state for which all successors were 

already explored. Now it’s DFS’2 turn to try to close the loop.

The Double DFS algorithm

Institute for Applied Information Processing and Communications
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dfs2

1 2 3 4

8

5 6 7

Stack 1 = {1 – 4} Stack 2 = {4,5}

Table 1 = {1 – 8} Table 2 = {4 - 7}

No point continuing to what is already in Table 2 (why?)

The Double DFS algorithm
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The Double DFS algorithm
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dfs2

1 2 3 4

8

5 6 7

Stack 1 = {1 – 4} Stack 2 = {4,8}

Table 1 = {1 – 8} Table 2 = {4 – 8}

Bingo! Found a cycle !

(DFS2 progresses to node 3 which is on Stack1)
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▪ The Double-DFS algorithm outputs  “empty” ⇔ 𝓛(𝓑) is empty.  

▪ If Double-DFS outputs “not empty”, 

then content of Stack1 + Stack2 + t  is a word in 𝓛(𝓑).
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DFS1(s)  {    

push(s,Stack1); 

hash(s,Table1);

for each t ∈ Succ (s) do {

if t ∉ Table1 then DFS1(t);

}

if s ∈ F then DFS2(s); 

pop(Stack1); 

}

DFS2(s) { 

push(s, Stack2);

hash(s, Table2) ;

for each t ∈ Succ (s) do {

if t is on Stack1 exit(“not empty”);

else if t ∉ Table2 then DFS2(t)     

}

pop( Stack2); 

} 

▪ What is the worst-case complexity in time and space?
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DFS1(s)  {    

push(s,Stack1); 

hash(s,Table1);

for each t ∈ Succ (s) do {

if t ∉ Table1 then DFS1(t);

}

if s ∈ F then DFS2(s); 

pop(Stack1); 

}

DFS2(s) { 

push(s, Stack2);

hash(s, Table2) ;

for each t ∈ Succ (s) do {

if t is on Stack1 exit(“not empty”);

else if t ∉ Table2 then DFS2(t)     

}

pop( Stack2); 

} 

▪ What is the worst-case complexity in time and space?

▪ O(|𝓑|)
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1

2

3 4

5

▪ Apply the DDFS algorithm:



Double-DFS
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1

2

3 4

5

▪ Apply the DDFS algorithm:

Stack 1 = {1,2,3,4,5} Stack 2 = {5} t=3

Table 1 = {1,2,3,4,5} Table 2 = {5}



Outline
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▪ Finite automata on finite words

▪ Automata on infinite words (Büchi automata)

▪ Deterministic vs non-deterministic Büchi automata

▪ Intersection of Büchi automata

▪ Checking emptiness of Büchi automata

▪ Generalized Büchi automata

▪ Automata and Kripke Structures

▪ Model checking using automata

▪ Translation of LTL to Büchi automata
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01.06.2021

Institute for Applied Information Processing and Communications

59

▪ Have several sets of accepting states

▪ 𝓑 =(𝚺,𝐐,𝚫,𝐐0,𝐅) is a generalized Büchi automaton:

▪ 𝐅 = {P1, …, Pk}, where for every 1 ≤ i ≤ k, Pi ⊆ Q 

▪ A run ρ of 𝓑 is accepting if for each Pi ∈ 𝐅,  inf(ρ) ∩ Pi ≠ ∅



Translation from Generalized Büchi to Büchi
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▪ Given 𝓑 = (𝚺,𝐐1,𝚫1,𝐐1
0,𝐅1) with 𝐅 = {P1, …, Pk} 

▪ How does it work to construct a Büchi automaton 𝓑’
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▪ 𝓑 = (𝚺,𝐐1,𝚫1,𝐐1
0,𝐅1) with 𝐅 = {P1, …, Pk} 

▪ 𝓑’ = (𝚺, 𝐐×{0,1,…,k}, 𝚫’,𝐐0x0,  𝐐×k) with:



Translation from Generalized Büchi to Büchi
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▪ 𝓑 = (𝚺,𝐐1,𝚫1,𝐐1
0,𝐅1) with 𝐅 = {P1, …, Pk} 

▪ 𝓑’ = (𝚺, 𝐐×{0,1,…,k}, 𝚫’,𝐐0x0,  𝐐×k) with:

▪ The transition relation 𝚫’:

((q,x),a,(q′,y)) ∈ 𝚫 ′ when (q,a,q′) ∈ 𝚫 and x and y are as follows:

▪ If q′ ∈ Pi and x=i, then y=i+1 for i<k

▪ If x=k, then y=0.

▪ Otherwise, x = y. 
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▪ 𝓑 = (𝚺,𝐐1,𝚫1,𝐐1
0,𝐅1) with 𝐅 = {P1, …, Pk} 

▪ 𝓑’ = (𝚺, 𝐐×{0,1,…,k}, 𝚫’,𝐐0x0,  𝐐×k) with:

▪ The transition relation 𝚫’:

((q,x),a,(q′,y)) ∈ 𝚫 ′ when (q,a,q′) ∈ 𝚫 and x and y are as follows: 

▪ If q′ ∈ Pi and x=i, then y=i+1 for i<k

▪ If x=k, then y=0.

▪ Otherwise, x = y. 

▪ Size of 𝓑’ = (size of 𝓑)×(k+1)



Outline
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▪ Finite automata on finite words

▪ Automata on infinite words (Büchi automata)

▪ Deterministic vs non-deterministic Büchi automata

▪ Intersection of Büchi automata

▪ Checking emptiness of Büchi automata

▪ Generalized Büchi automata

▪ Automata and Kripke Structures

▪ Model checking using automata

▪ Translation of LTL to Büchi automata



Kripke Structure 𝐌 to Büchi Automaton 𝓐𝐌
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▪ Move labels to transitions

▪ All states are accepting

▪ What about initial states?

p,q p

q s2

ι

{ p, q} { p}

{q}{ p, q}

{ p}

{ p, q}s1s0

s0 s1

s2𝐌: 𝓐𝐌 :



Kripke Structure 𝐌 to Büchi Automaton 𝓐𝐌
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▪ Move labels to transitions

▪ All states are accepting

p,q p

q s2

ι

{ p, q} { p}

{q}{ p, q}

{ p}

{ p, q}s1s0

s0 s1

s2𝐌: 𝓐𝐌 :



Automata and Kripke Structures
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𝐌 = (𝐒, 𝐒0, 𝐑, AP, 𝐋)  ⇒ 𝓐𝐌 = (𝚺, 𝐒∪{𝛊}, 𝚫, {ι}, 𝐒∪{𝛊}) ,

where 𝚺 = P(AP). 

p,q p

q s2

ι

{p, q} {p}

{q}{p, q}

{p}

{p, q}s1s0

s0 s1

s2𝐌: 𝓐𝐌 :



Automata and Kripke Structures
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𝐌 = (𝐒, 𝐒0, 𝐑, AP, 𝐋)  ⇒ 𝓐𝐌 = (𝚺, 𝐒∪{𝛊}, 𝚫, {𝛊}, 𝐒∪{𝛊}) ,

where 𝚺 = P(AP). 

▪ (s,α,s′) ∈ 𝚫 for s,s′ ∈ 𝐒⇔ (s,s′) ∈ R and α = 𝐋(s′)

p,q p

q s2

ι

{p, q} {p}

{q}{p, q}

{p}

{p, q}s1s0

s0 s1

s2𝐌: 𝓐𝐌 :
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𝐌 = (𝐒, 𝐒0, 𝐑, AP, 𝐋)  ⇒ 𝓐𝐌 = (𝚺, 𝐒∪{𝛊}, 𝚫, {𝛊}, 𝐒∪{𝛊}) ,

where 𝚺 = P(AP). 

▪ (s,α,s′) ∈ 𝚫 for s,s′ ∈ 𝐒⇔ (s,s′) ∈ R and α = 𝐋(s′)

▪ (𝛊,α,s) ∈ 𝚫⇔ s ∈ 𝐒0 and α = 𝐋(s) 

p,q p

q s2

ι

{p, q} {p}

{q}{p, q}

{p}

{p, q}s1s0

s0 s1

s2𝐌: 𝓐𝐌 :
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▪ Finite automata on finite words

▪ Automata on infinite words (Büchi automata)

▪ Deterministic vs non-deterministic Büchi automata

▪ Intersection of Büchi automata

▪ Checking emptiness of Büchi automata

▪ Generalized Büchi automata

▪ Automata and Kripke Structures

▪ Model checking using automata

▪ Translation of LTL to Büchi automata
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▪ 𝓐 satisfies 𝓢 if 𝓛(𝓐) ⊆ 𝓛(𝓢) 

All possible sequences

Sequences satisfying 𝓢

Computations of 𝓐
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▪ 𝓐 does not satisfy 𝓢 if 𝓛(𝓐) ⊈ 𝓛(𝓢) 

All possible sequences

Sequences satisfying 𝓢

Computations of 𝓐

Counter-

examples
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▪ Check whether 𝓛(𝓐) ⊆ 𝓛(𝓢) 

▪ Equivalent:

𝓛(𝓐) ⊈ 𝓛(𝓢)  ≡  𝓛(𝓐) ∩ 𝓛(ഥ𝓢) ≠ ∅

𝓛(𝓐) ⊆ 𝓛(𝓢) 𝓛(𝓐) ⊈ 𝓛(𝓢)  ≡  𝓛(𝓐) ∩ 𝓛(ഥ𝓢) ≠ ∅



Model Checking – suggested algorithm

1. Complement 𝓢. The resulting Büchi automaton is ഥ𝓢

2. Construct the automaton 𝓑 with 𝓛(𝓑) = 𝓛(𝓐) ∩ 𝓛(ഥ𝓢)

3. If 𝓛(𝓑) = ∅ ⇒𝓐 satisfies 𝓢

4. Otherwise, a word 𝑣 ∙ 𝑤𝜔 ∈ 𝓛(𝓑) is a counterexample

▪ a computation in 𝓐 that does not satisfy 𝓢
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✓
✓

✓

very hard!

How can we avoid building the complement of 𝓢?



Model Checking of LTL
given an LTL property 𝜑 and a Kripke structure M

check whether M ⊨ 𝜑

1. Construct ¬𝜑

2. Construct a Büchi automaton 𝓢¬𝜑

3. Translate M to an automaton 𝓐.

4. Construct the automaton 𝓑 with 𝓛(𝓑) = 𝓛(𝓐) ∩ 𝓛(𝓢¬𝜑)

5. If 𝓛(𝓑) = ∅ ⇒𝓐 satisfies 𝜑

6. Otherwise, a word 𝑣 ∙ 𝑤𝜔 ∈ 𝓛(𝓑) is a counterexample

▪ a computation in M that does not satisfy 𝜑
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next topic
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