

Graz University of Technology Institute for Applied Information Processing and Communications

Automata and LTL Model Checking Bettina Könighofer

Model Checking SS21

May 20th 2021

Outline

Finite automata on finite words

ΙΔΙΚ

2

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata
- Translation of LTL to Büchi automata
- On-the-fly model checking of LTL

Outline

Finite automata on finite words

ΙΔΙΚ

3

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

Finite Automata on Finite Words Regular Automata

• $\mathcal{A} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$

ΙΔΙΚ

- Σ is the finite alphabet
- Q is the finite set of states
- $\Delta \subseteq \mathbf{Q} \times \mathbf{\Sigma} \times \mathbf{Q}$ is the transition relation
- Q⁰ is the set of initial states
- F is the set of accepting states
 - A accepts a word if there is a corresponding run ending in an accepting state

а

Finite Automata on Finite Words Regular Automata

- Example: $\mathcal{A} = (\Sigma, Q, \Delta, Q^0, F)$
- $\Sigma = \{a, b\}$

ΙΙΑΙΚ

- $\bullet \quad \mathbf{Q} = \{q_1, q_2\}$
- $\Delta = \{ (q_1, a, q_1), (q_1, b, q_2), (q_2, a, q_1), (q_2, b, q_2) \},$
- $\bullet \quad \mathbf{Q}^0 = \{q_1\}$
- **F** = $\{q_1\}$

Finite Automata on Finite Words

- Example: $\mathcal{A} = (\Sigma, Q, \Delta, Q^0, F)$
- $\Sigma = \{a, b\}$
- $\bullet \quad \mathbf{Q} = \{q_1, q_2\}$
- $\Delta = \{ (q_1, a, q_1), (q_1, b, q_2), (q_2, a, q_1), (q_2, b, q_2) \},$
- $\bullet \quad \mathbf{Q}^0 = \{q_1\}$
- $\mathbf{F} = \{q_1\}$

What words does it accept? q_1 q_2 b

a

b

Finite Automata on Finite Words

- Example: $\mathcal{A} = (\Sigma, Q, \Delta, Q^0, F)$
- $\Sigma = \{a, b\}$
- $\bullet \quad \mathbf{Q} = \{q_1, q_2\}$
- $\Delta = \{ (q_1, a, q_1), (q_1, b, q_2), (q_2, a, q_1), (q_2, b, q_2) \},\$
- $\bullet \quad \mathbf{Q}^0 = \{q_1\}$
- **F** = $\{q_1\}$
- What words does it accept?
- $\mathcal{L}(\mathcal{A}) = \{\text{the empty word}\} \cup \\ \{\text{all words that end with a}\} \\ = \{\epsilon\} \cup \{a,b\}^*a$

Finite Automata on Finite Words

Build an automaton that accepts all and only those strings that contain 001

Secure & Correct Systems

Finite Automata on Finite Words

Build an automaton that accepts all and only those strings that contain 001

- Given a word $v=a_1,a_2,\ldots,a_n$ and automaton \mathcal{A}
- A run $\rho = q_0, q_1, \dots, q_n$ of A over v is a sequence of states s.t.:
 - q₀∈ **Q**⁰

ΙΙΑΙΚ

- for all $0 \le i \le n-1$, $(q_i, a_{i+1}, q_{i+1}) \in \Delta$
- $\rightarrow \rho$ is a path in the graph of \mathcal{A} .
- A run is accepting ⇔
- \mathcal{A} accepts $\mathbf{v} \Leftrightarrow$
- Language of *A*
- Languages accepted by finite automata are regular languages.

- Given a word $v=a_1,a_2,\ldots,a_n$ and automaton \mathcal{A}
- A run $\rho = q_0, q_1, \dots, q_n$ of A over v is a sequence of states s.t.:
 - q₀∈ **Q**⁰

ΙΙΑΙΚ

- for all $0 \le i \le n-1$, $(q_i, a_{i+1}, q_{i+1}) \in \Delta$
- $\rightarrow \rho$ is a path in the graph of \mathcal{A} .
- A run is accepting $\Leftrightarrow q_n \in \mathbf{F}$
- \mathcal{A} accepts $\mathbf{v} \Leftrightarrow$
- Language of A
- Languages accepted by finite automata are regular languages.

- Given a word $v=a_1,a_2,\ldots,a_n$ and automaton \mathcal{A}
- A run $\rho = q_0, q_1, \dots, q_n$ of A over v is a sequence of states s.t.:
 - q₀∈ **Q**⁰

ΙΙΑΙΚ

- for all $0 \le i \le n-1$, $(q_i, a_{i+1}, q_{i+1}) \in \Delta$
- $\rightarrow \rho$ is a path in the graph of \mathcal{A} .
- A run is accepting $\Leftrightarrow q_n \in F$
- \mathcal{A} accepts $\mathbf{v} \Leftrightarrow$ there exists an accepting run of \mathcal{A} on \mathbf{v}
- Language of A

- Given a word $v=a_1,a_2,\ldots,a_n$ and automaton \mathcal{A}
- A run $\rho = q_0, q_1, \dots, q_n$ of A over v is a sequence of states s.t.:
 - q₀∈ **Q**⁰

ΙΙΑΙΚ

- for all $0 \le i \le n-1$, $(q_i, a_{i+1}, q_{i+1}) \in \Delta$
- $\rightarrow \rho$ is a path in the graph of \mathcal{A} .
- A run is accepting $\Leftrightarrow q_n \in \mathbf{F}$
- \mathcal{A} accepts $\mathbf{v} \Leftrightarrow$ there exists an accepting run of \mathcal{A} on \mathbf{v}
- Language of *A*
 - $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$, is the set of words that \mathcal{A} accepts.

- Given a word $v=a_1,a_2,\ldots,a_n$ and automaton \mathcal{A}
- A run $\rho = q_0, q_1, \dots, q_n$ of A over v is a sequence of states s.t.:
 - q₀∈ **Q**⁰

ΙΙΑΙΚ

- for all $0 \le i \le n-1$, $(q_i, a_{i+1}, q_{i+1}) \in \Delta$
- $\rightarrow \rho$ is a path in the graph of \mathcal{A} .
- A run is accepting $\Leftrightarrow q_n \in \mathbf{F}$
- \mathcal{A} accepts $\mathbf{v} \Leftrightarrow$ there exists an accepting run of \mathcal{A} on \mathbf{v}
- Language of *A*
 - $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$, is the set of words that \mathcal{A} accepts.
- Languages accepted by finite automata are *regular languages*.

Deterministic & Non-Deterministic Automata

- \mathcal{A} is deterministic if Δ is a function (one output for each input).
- |**Q**⁰| = 1, and
- $\forall q \in \mathbf{Q} \ \forall a \in \Sigma$: $| \Delta(q,a) | \leq 1$
- Det. automata have exactly one run for each word.
- Non-det. automata
 - Can have ε-transitions (transitions without a letter)
 - Can have transitions (q,a,q'),(q,a,q")∈ Δ and q"≠q'

Nondeterministic Finite Automata (NFA)

- NFA accepts all words that have a run to an accepting state
- What is the language of this automaton?

Nondeterministic Finite Automata (NFA)

- NFA accepts all words that have a run to an accepting state
- What is the language of this automaton?

 $\mathcal{L}(\mathcal{A}) = \{ all words that end with a \} \}$

Every NFA can be transformed to DFA.

- Every NFA can be transformed to DFA.
- Subset-Construction (exponential blow-up)
 - NFA: $\mathcal{A} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$
 - DFA: $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ such that
 - $\Delta': P(Q) \times \Sigma \to P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if

$$Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}$$

• $F' = \{Q' | Q' \cap F \neq \emptyset\}$

Non-deterministic automaton \mathcal{A}

Institute for Applied Information Processing and Communications 19.05.2021

Compute the equivalent DFA

- $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ such that
 - $\Delta': P(Q) \times \Sigma \to P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if

$$Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}$$

•
$$F' = \{Q' | Q' \cap F \neq \emptyset\}$$

Non-deterministic automaton \mathcal{A}

- Compute the equivalent DFA
- $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ such that
 - $\Delta': P(Q) \times \Sigma \to P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if

$$Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}$$

•
$$F' = \{Q' | Q' \cap F \neq \emptyset\}$$

Non-deterministic automaton \mathcal{A}

Equivalent deterministic automaton

- Compute the equivalent DFA
 - $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ such that
 - $\Delta': P(Q) \times \Sigma \to P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if

$$Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}$$

• $F' = \{Q' | Q' \cap F \neq \emptyset\}$

Non-deterministic automaton $\boldsymbol{\mathcal{A}}$

Compute the equivalent DFA

24

- $\mathcal{A}' = (\Sigma, P(\mathbf{Q}), \Delta', \{\mathbf{Q}^0\}, \mathbf{F}')$ such that
 - $\Delta': P(Q) \times \Sigma \to P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if

$$Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}$$

• $F' = \{Q' | Q' \cap F \neq \emptyset\}$

Non-deterministic automaton \mathcal{A}

Institute for Applied Information Processing and Communications 19.05.2021

Complement of DFA

- The complement automaton A accepts exactly those words that are rejected by A
- **Do** How do we construct \overline{A} ?

ΙΙΑΙΚ

25

 $\overline{A}=?$

Complement of DFA

- The complement automaton A accepts exactly those words that are rejected by A
- Construction of $\overline{\mathcal{A}}$
 - 1. Substitution of accepting and non-accepting states

Consider NFA that accepts words that end with 001

Consider NFA that accepts words that end with 001

Let's try switching accepting and non-accepting states:

сA

Consider NFA that accepts words that end with 001

Let's try switching accepting and non-accepting states:

The language of this automaton is {0,1}* - this is wrong!

A

Complement of NFA

- The complement automaton A accepts exactly those words that are rejected by A
- Construction of $\overline{\mathcal{A}}$
 - 1. Determinization: Convert NFA to DFA
 - 2. Substitution of accepting and non-accepting states

Intersections of NFAs

- Given two languages, L₁ and L₂, the intersection of L₁ and L₂ is $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$
- Regular languages are closed under Union, Intersection, Concatenation, and Complementation

ΙΑΙΚ

Intersections of NFAs

- Given two languages, L_1 and L_2 , the intersection of L_1 and L_2 is $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$
- Product automaton of $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ has $L(\mathcal{A}) = L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$
 - $Q = Q_1 \times Q_2$ (Cartesian product),
 - $\Delta((q_1, q_2), a) = (\Delta_1(q_1, a), \Delta_2(q_2, a))$
 - $q_0 = (q_{01}, q_{02})$

ΙΑΙΚ

32

• $(q_1, q_2) \in F \text{ iff } q_1 \in F_1 \text{ and } q_2 \in F_2$

Intersections of NFAs

- Given two languages, L_1 and L_2 , the intersection of L_1 and L_2 is $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$
- Product automaton of $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$
 - $Q = Q_1 \times Q_2$ (Cartesian product),
 - $\Delta((q_1, q_2), a) = (\Delta_1(q_1, a), \Delta_2(q_2, a))$
 - $q_0 = (q_{01}, q_{02})$

ΙΙΑΙΚ

33

• $(q_1, q_2) \in F$ iff $q_1 \in F_1$ and $q_2 \in F_2$

$$\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$$

- 1. States: (s_0,t_0) , (s_0,t_1) , (s_1,t_0) , (s_1,t_1) .
- 2. Initial state: (s_0, t_0) .
- 3. Accepting states: (s_0,t_0) , (s_0,t_1) .

Intersections of NFAs

 $L(\mathcal{A}_1) = (a+b)^*a + \varepsilon$ (words ending with 'a' + empty word)

$$L(\mathcal{A}_2) = (ba)^* + (ba)^*b$$

 $L(\mathcal{A}_1 \times \mathcal{A}_2) = (ba)^*$

Outline

Finite automata on finite words

ΙΙΔΙΚ

38

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

Automata on Infinite Words (Büchi) $\boldsymbol{\mathcal{B}} = (\boldsymbol{\Sigma}, \boldsymbol{Q}, \boldsymbol{\Delta}, \boldsymbol{Q}^0, \boldsymbol{F})$

- An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinite number of times.
 - $\inf(\rho) \cap F \neq \emptyset$

Automata on Infinite Words (Büchi) $\boldsymbol{\mathcal{B}} = (\boldsymbol{\Sigma}, \boldsymbol{Q}, \boldsymbol{\Delta}, \boldsymbol{Q}^0, \boldsymbol{F})$

- An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinite number of times.
 - $\inf(\rho) \cap F \neq \emptyset$
- $\mathcal{L}(\mathcal{B}) \subseteq \Sigma^{\omega}$ is the set of all infinite words that \mathcal{B} accepts

Automata on Infinite Words (Büchi) $\boldsymbol{\mathcal{B}} = (\boldsymbol{\Sigma}, \boldsymbol{Q}, \boldsymbol{\Delta}, \boldsymbol{Q}^0, \boldsymbol{F})$

- An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinite number of times.
 - $\inf(\rho) \cap F \neq \emptyset$

ΙΙΔΙΚ

41

- $\mathcal{L}(\mathcal{B}) \subseteq \Sigma^{\omega}$ is the set of all infinite words that \mathcal{B} accepts
- Languages accepted by finite automata on infinite words are called ω-regular languages.

Automata on Infinite Words (Büchi) $\mathcal{B} = (\Sigma, Q, \Delta, Q^0, F)$

- ρ is accepting \Leftrightarrow inf(ρ) \cap F \neq Ø
- What is the language of this automaton?

ΙΙΑΙΚ

42

Automata on Infinite Words (Büchi) $\mathcal{B} = (\Sigma, Q, \Delta, Q^0, F)$

 ρ is accepting \Leftrightarrow inf(ρ) \cap F \neq Ø

Language of Bücho Automaton B

 $\mathcal{L}(\mathcal{B}) = \{ \text{words with an} \\ \text{Infinite number of a's} \\ \text{or} \\ \mathcal{L}(\mathcal{B}) = (\{a,b\}^*a)^{\omega} \end{cases}$

Automata on Infinite Words (Büchi) $\mathcal{B} = (\Sigma, Q, \Delta, Q^0, F)$

 ρ is accepting \Leftrightarrow inf(ρ) \cap F \neq Ø

Language of Bücho Automaton B Can you express it in LTL?

 $\mathcal{L}(\mathcal{B}) = \{ \text{words with an} \\ \text{Infinite number of a's} \\ \text{or} \\ \mathcal{L}(\mathcal{B}) = (\{a,b\}^*a)^{\omega}$

45

Automata on Infinite Words (Büchi) $\mathcal{B} = (\Sigma, Q, \Delta, Q^0, F)$

 ρ is accepting \Leftrightarrow inf(ρ) \cap F \neq Ø

Language of Bücho Automaton B

 $\mathcal{L}(\mathcal{B}) = \{ \text{words with an} \\ \text{Infinite number of a's} \\ \text{or} \\ \mathcal{L}(\mathcal{B}) = (\{a,b\}^*a)^{\omega} \\ \text{In LTL: } GF(a) \end{cases}$

Outline

Finite automata on finite words

ΙΙΔΙΚ

46

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

- Deterministic Büchi automata are strictly less expressive than nondeterministic ones.
 - That is, not every nondeterministic Büchi automaton has an equivalent deterministic Büchi one.

<u>Lemma 1:</u> Let \mathcal{B} be a deterministic Büchi automaton. Then, $\forall w \in \Sigma^{\omega}, w \in \mathcal{L}(\mathcal{B}) \Leftrightarrow \exists$ infinitely many finite prefixes of w on which \mathcal{B} reaches an accepting state.

<u>Lemma 1:</u> Let \mathcal{B} be a deterministic Büchi automaton. Then, $\forall w \in \Sigma^{\omega}, w \in \mathcal{L}(\mathcal{B}) \Leftrightarrow \exists$ infinitely many finite prefixes of w on which \mathcal{B} reaches an accepting state.

Proof sketch:

A deterministic automaton \mathcal{B} has exactly one run on each word w. This run is accepting \Leftrightarrow a state $q \in F$ is reached an infinite number of times \Leftrightarrow on infinitely many prefixes of w, q is reached.

<u>Theorem</u>: There exists a non-deterministic Büchi automaton \mathcal{B} for which there is no equivalent deterministic one.

Theorem: There exists a non-deterministic Büchi automaton **B** for which there is no equivalent deterministic one.

Proof: Consider **B** below. What is its language? (Also in LTL)

Secure & Correct Systems

Det. and Non-det. Büchi Automata

<u>Theorem</u>: There exists a non-deterministic Büchi automaton \mathcal{B} for which there is no equivalent deterministic one.

Proof: Consider **B** below. What is its language?

Institute for Applied Information Processing and Communications 20.05.2021

Proof:

Consider \mathcal{B} below. $\mathcal{L}(\mathcal{B})=\{\text{words with finitely many a's}\}$. Assume there exists deterministic $C: \mathcal{L}(C) = \mathcal{L}(\mathcal{B})$. Note that for any finite word $\sigma, \sigma \cdot b^{\omega} \in \mathcal{L}(\mathcal{B})$, so C accepts $\sigma \cdot b^{\omega}$ as well.

■ Since $b^{\omega} \in \mathcal{L}(C)$, there is an accepting state $q_1 \in F$, so that the run on b^{ω} passes through q_1 after b^{n1}

- Since $b^{(i)} \in \mathcal{L}(\mathcal{C})$, there is an accepting state $q_1 \in F$, so that the run on $b^{(i)}$ passes through q_1 after b^{n1}
- Since $b^{n1}ab^{\omega} \in \mathcal{L}(\mathcal{C})$, there is $q_2 \in F$, so that the run on $b^{n1}ab^{\omega}$ passes through q_2 after $b^{n1}ab^{n2}$

- Since $b^{(i)} \in \mathcal{L}(\mathcal{C})$, there is an accepting state $q_1 \in F$, so that the run on $b^{(i)}$ passes through q_1 after b^{n1}
- Since $b^{n1}ab^{\omega} \in \mathcal{L}(\mathcal{C})$, there is $q_2 \in F$, so that the run on $b^{n1}ab^{\omega}$ passes through q_2 after $b^{n1}ab^{n2}$
- Since $b^{n1}ab^{n2}ab^{\omega} \in \mathcal{L}(\mathcal{C})$, there is $q_3 \in F$, so that the run on $b^{n1}ab^{n2}ab^{\omega}$ passes through q_3 after $b^{n1}ab^{n2}ab^{n3}$
- And so on...

- Since $b^{(i)} \in \mathcal{L}(\mathcal{C})$, there is an accepting state $q_1 \in F$, so that the run on $b^{(i)}$ passes through q_1 after b^{n1}
- Since $b^{n1}ab^{\omega} \in \mathcal{L}(\mathcal{C})$, there is $q_2 \in F$, so that the run on $b^{n1}ab^{\omega}$ passes through q_2 after $b^{n1}ab^{n2}$
- Since $b^{n1}ab^{n2}ab^{\omega} \in \mathcal{L}(\mathcal{C})$, there is $q_3 \in F$, so that the run on $b^{n1}ab^{n2}ab^{\omega}$ passes through q_3 after $b^{n1}ab^{n2}ab^{n3}$
- And so on...
- For every k, there is $q_k \in F$, reached after $b^{n1}ab^{n2}...ab^{nk}$

Since *C* is deterministic, there is one run going through
 q₁ q₂ q₃...q_k

- Since *C* is deterministic, there is one run going through $q_1 q_2 q_3 \dots q_k$
- **F** is finite therefore there is j < l such that $q_j = q_l$

- Since *C* is deterministic, there is one run going through $q_1 q_2 q_3 \dots q_k$
- **F** is finite therefore there is j < l such that $q_i = q_l$
- Thus, in *C* there is a lasso-shape run that goes through q_j infinitely often, passing through a infinitely often.

- Since *C* is deterministic, there is one run going through
 q₁ q₂ q₃...q_k
- **F** is finite therefore there is j < l such that $q_i = q_l$
- Thus, in *C* there is a lasso-shape run that goes through q_j infinitely often, passing through a infinitely often.
- This run is accepting a word with infinitely many a.

- Since *C* is deterministic, there is one run going through $q_1 q_2 q_3 \dots q_k$
- **F** is finite therefore there is j < l such that $q_j = q_l$
- Thus, in C there is a lasso-shape run that goes through q_j infinitely often, passing through a infinitely often.
- This run is accepting a word with infinitely many **a**.
- A contradiction!
- Conclusion: there is no det. automaton, equivalent to \mathcal{B} .

<u>Lemma 2</u>: Deterministic Büchi automata are not closed under complementation.

Proof Idea for Lemma 2?

• Hint: Consider the language $\mathcal{L}(\mathcal{A}) = \{$ words with infinitely many a's $\}$.

<u>Lemma 2</u>: Deterministic Büchi automata are not closed under complementation.

Proof:

- Consider the language $\mathcal{L} = \{$ words with infinitely many a's $\}$.
- Construct a deterministic Büchi automaton A that accepts L.

<u>Lemma 2</u>: Deterministic Büchi automata are not closed under complementation.

Proof:

- Consider the language $\mathcal{L} = \{$ words with infinitely many a's $\}$.
- Construct a deterministic Büchi automaton *A* that accepts *L*.
- Its complement is L'={words with finitely many a's}, for which there is no deterministic Büchi automaton (see Theorem).

Institute for Applied Information Processing and Communications 20.05.2021

Theorem: Nondeterministic Büchi automata are closed under complementation.

- The construction is very complicated. We will not see it here.
- Originally Büchi showed an algorithm for complementation that is double exponential in the size n of the automaton
- Mooly Safra (Tel-Aviv University) proved that it can be done by

20(n log n)

Outline

Finite automata on finite words

ΙΙΔΙΚ

67

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

- What is $\mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$?
- The language L(B₁) ∩ L(B₂) =
 {words with an infinite number of a's and infinite number of b's} not empty

• $\mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2) =$ {words with an infinite number of a's and infinite number of b's}

Institute for Applied Information Processing and Communications 20.05.2021

- $\mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2) =$ {words with an infinite number of a's and infinite number of b's}
- What do you get if you build the standard intersection?

- $\mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2) =$ {words with an infinite number of a's and infinite number of b's}
- What do you get if you build the standard intersection?

- *L*(*B*₁) ∩ *L*(*B*₂) =
 {words with an infinite number of a's and infinite number of b's}
- A standard intersection does not work the automaton will not have any accepting states!

Intersection of Büchi Automata

- Given $\mathcal{B}_1 = (\Sigma, \mathbf{Q}_1, \mathbf{\Delta}_1, \mathbf{Q}_1^0, \mathbf{F}_1)$ and $\mathcal{B}_2 = (\Sigma, \mathbf{Q}_2, \mathbf{\Delta}_2, \mathbf{Q}_2^0, \mathbf{F}_2)$
- **\mathcal{B} = (\Sigma, Q, \Delta, Q^0, F) s.t.** $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$ is defined as follows:
 - $\mathbf{Q} = \mathbf{Q}_1 \times \mathbf{Q}_2 \times \{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$
 - $\mathbf{Q}^{0} = \mathbf{Q}_{1}^{0} \times \mathbf{Q}_{2}^{0} \times \{\mathbf{0}\}$
 - $\mathbf{F} = \mathbf{Q}_1 \times \mathbf{Q}_2 \times \{\mathbf{2}\}$

ΙΙΔΙΚ

73

Intersection of Büchi Automata

```
\begin{array}{l} ((q_1,q_2,x),\,a,\,(q'_1,q'_2,x'))\in\Delta\iff\\ (1)\ (q_1,a,q'_1)\in\Delta_1\ \text{and}\ (q_2,a,q'_2)\in\Delta_2\ \text{and}\\ (2)\ \text{If $x=0$ and $q'_1\in F_1$ then $x'=1$}\\ \text{If $x=1$ and $q'_2\in F_2$ then $x'=2$}\\ \text{If $x=2$ then $x'=0$}\\ \text{Else, $x'=x$} \end{array}
```

ΙΑΙΚ

74

Explanation: x=0 is waiting for an accepting state from F_1 x=1 is waiting for an accepting state from F_2

Secure & Correct Systems

Institute for Applied Information Processing and Communications 19.05.2021

