

Graz University of Technology Institute for Applied Information Processing and Communications

Automata and LTL Model Checking Bettina Könighofer

Model Checking SS21 May 20th 2021

Outline

Finite automata on finite words

2

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata
- **E** Translation of LTL to Büchi automata
- On-the-fly model checking of LTL

Outline

■ Finite automata on finite words

3

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

Finite Automata on Finite Words Regular Automata

 \blacksquare $\mathcal{A} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$

4

 $\overline{\mathbf{H}}$

- Σ is the finite alphabet
- \blacksquare Q is the finite set of states
- \blacksquare $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation
- \bullet Q⁰ is the set of initial states
- **F** is the set of accepting states
	- A accepts a word if there is a corresponding run ending in an accepting state

a

Finite Automata on Finite Words Regular Automata

- **Example:** $\mathcal{A} = (\Sigma, \mathbf{Q}, \mathbf{\Delta}, \mathbf{Q}^0, \mathbf{F})$
- \bullet $\Sigma = \{a, b\}$

5

- \bullet **Q** = { q_1, q_2 }
- \blacksquare $\Delta = \{ (q_1, a, q_1), (q_1, b, q_2), (q_2, a, q_1), (q_2, b, q_2) \},\$
- $\mathbf{Q}^0 = \{q_1$
- \bullet **F** = {q₁}

- **Example:** $\mathcal{A} = (\Sigma, \mathbf{Q}, \mathbf{\Delta}, \mathbf{Q}^0, \mathbf{F})$
- $\sum = \{a, b\}$
- \bullet **Q** = { q_1, q_2 }
- $\Delta = \{ (q_1, a, q_1), (q_1, b, q_2), (q_2, a, q_1), (q_2, b, q_2) \},\$
- $\mathbf{Q}^0 = \{q_1$
- \bullet **F** = { q_1 }

olo What words does it accept?

- **Example:** $\mathcal{A} = (\Sigma, \mathbf{Q}, \mathbf{\Delta}, \mathbf{Q}^0, \mathbf{F})$
- $\Sigma = \{a, b\}$
- \bullet **Q** = { q_1, q_2 }
- $\Delta = \{ (q_1, a, q_1), (q_1, b, q_2), (q_2, a, q_1), (q_2, b, q_2) \},\$
- $\mathbf{Q}^0 = \{q_1$
- \blacksquare **F** = {q₁}
- What words does it accept?
- $\mathcal{L}(\mathcal{A}) = \{$ the empty word $\} \cup$ {all words that end with a} $=\{\epsilon\}\cup \{a,b\}^*$ a

 $\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \\ \overline{c} & \overline{c} & \overline{c} \\ \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ Build an automaton that accepts all and only those IOD_O strings that contain 001

Build an automaton that accepts all and only those strings that contain 001

- Given a word $v=a_1, a_2, ..., a_n$ and automaton *A*
- **A** run $p = q_0, q_1, \ldots, q_n$ of A over v is a sequence of states s.t.:
	- $q_0 \in \mathbf{Q}^0$

11

- for all $0 \le i \le n-1$, $(q_i, a_{i+1}, q_{i+1}) \in \Delta$
- $\bullet \rightarrow \rho$ is a path in the graph of A.
- A run is accepting \Leftrightarrow
- $\mathcal A$ accepts $v \Leftrightarrow$
- Language of A ▪ () ⊆
- Languages accepted by finite automata are *regular languages*.

- Given a word $v=a_1, a_2, ..., a_n$ and automaton *A*
- **A** run $p = q_0, q_1, \ldots, q_n$ of A over v is a sequence of states s.t.:
	- $q_0 \in \mathbf{Q}^0$

12

- for all $0 \le i \le n-1$, $(q_i, a_{i+1}, q_{i+1}) \in \Delta$
- $\bullet \rightarrow \rho$ is a path in the graph of A.
- A run is accepting \Leftrightarrow q_n \in **F**
- $\mathcal A$ accepts $v \Leftrightarrow$
- Language of A ▪ () ⊆
- Languages accepted by finite automata are *regular languages*.

- Given a word $v=a_1, a_2, ..., a_n$ and automaton *A*
- **A** run $p = q_0, q_1, \ldots, q_n$ of A over v is a sequence of states s.t.:
	- $q_0 \in \mathbf{Q}^0$

13

- for all $0 \le i \le n-1$, $(q_i, a_{i+1}, q_{i+1}) \in \Delta$
- $\bullet \rightarrow \rho$ is a path in the graph of A.
- **■** A run is accepting \Leftrightarrow q_n \in **F**
- $\mathcal A$ accepts $\mathsf v \Leftrightarrow$ there exists an accepting run of $\mathcal A$ on $\mathsf v$
- Language of A \bullet

- Given a word $v=a_1, a_2, ..., a_n$ and automaton *A*
- **A** run $p = q_0, q_1, \ldots, q_n$ of A over v is a sequence of states s.t.:
	- $q_0 \in \mathbf{Q}^0$

14

- for all $0 \le i \le n-1$, $(q_i, a_{i+1}, q_{i+1}) \in \Delta$
- $\bullet \rightarrow \rho$ is a path in the graph of A.
- **■** A run is accepting \Leftrightarrow q_n \in **F**
- $\mathcal A$ accepts $\mathsf v \Leftrightarrow$ there exists an accepting run of $\mathcal A$ on $\mathsf v$
- Language of $\mathcal A$
	- $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$, is the set of words that A accepts.

- Given a word $v=a_1, a_2, ..., a_n$ and automaton *A*
- **A** run $p = q_0, q_1, \ldots, q_n$ of A over v is a sequence of states s.t.:
	- $q_0 \in \mathbf{Q}^0$

15

- for all $0 \le i \le n-1$, $(q_i, a_{i+1}, q_{i+1}) \in \Delta$
- $\bullet \rightarrow \rho$ is a path in the graph of A.
- **■** A run is accepting \Leftrightarrow q_n \in **F**
- $\mathcal A$ accepts $v \Leftrightarrow$ there exists an accepting run of $\mathcal A$ on v
- Language of $\mathcal A$
	- $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$, is the set of words that A accepts.
- Languages accepted by finite automata are *regular languages*.

Deterministic & Non-Deterministic Automata

- $\mathcal A$ is deterministic if Δ is a function (one output for each input).
- $|{\bf Q}^0|=1$, and
- \blacktriangleright $\forall q \in \mathbb{Q}$ $\forall a \in \Sigma$: $\Delta(q,a)$ | ≤ 1
- Det. automata have exactly one run for each word.
- Non-det. automata
	- Can have ε-transitions (transitions without a letter)
	- Can have transitions (q,a,q') , $(q,a,q'') \in \Delta$ and $q'' \neq q'$

Nondeterministic Finite Automata (NFA)

- NFA accepts all words that have a run to an accepting state
- olo What is the language of this automaton?

Secure & Correct Systems

Nondeterministic Finite Automata (NFA)

- NFA accepts all words that have a run to an accepting state
- What is the language of this automaton?

 $\mathcal{L}(\mathcal{A})$ = {all words that end with a}

IIAIK

Equivalent deterministic automaton

Every NFA can be transformed to DFA. How? Idea only

▪ Hint:

- Every NFA can be transformed to DFA.
- Subset-Construction (exponential blow-up)
	- \blacksquare NFA: $\mathcal{A} = (\Sigma, Q, \Delta, Q^0, F)$
	- **•** DFA: $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ such that
		- **•** Δ : $P(Q) \times \Sigma \rightarrow P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if

$$
Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}
$$

 \blacksquare $F' = \{Q' | Q' \cap F \neq \emptyset\}$

Non-deterministic automaton $\mathcal A$ Equivalent Det. automaton $\mathcal A$ '

19.05.2021 Institute for Applied Information Processing and Communications

Compute the equivalent DFA

- \blacksquare $\mathcal{A}' = (\Sigma, \, \mathsf{P}(\mathbf{Q}), \Delta', \{\mathbf{Q}^0\}, \mathbf{F'})$ such that
	- **A**: $P(Q) \times \Sigma \rightarrow P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if

$$
Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}
$$

$$
F' = \{Q' | Q' \cap F \neq \emptyset\}
$$

Non-deterministic automaton $\boldsymbol{\mathcal{A}}$ Equivalent Det. automaton $\boldsymbol{\mathcal{A}}$

- \blacksquare $\mathcal{A}' = (\Sigma, \, \mathsf{P}(\mathbf{Q}), \Delta', \{\mathbf{Q}^0\}, \mathbf{F'})$ such that
	- **A**: $P(Q) \times \Sigma \rightarrow P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if

$$
Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}
$$

 \blacksquare $F' = \{Q' | Q' \cap F \neq \emptyset\}$

Non-deterministic automaton $\boldsymbol{\mathcal{A}}$ Equivalent Det. automaton $\boldsymbol{\mathcal{A}}$

- Compute the equivalent DFA
	- \blacksquare $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ such that
		- **•** Δ : $P(Q) \times \Sigma \rightarrow P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if

$$
Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta \}
$$

 \blacksquare $F' = \{Q' | Q' \cap F \neq \emptyset\}$

Non-deterministic automaton $\mathcal A$ Equivalent Det. automaton $\mathcal A$ '

Compute the equivalent DFA

24

- \blacksquare $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ such that
	- **•** Δ : $P(Q) \times \Sigma \rightarrow P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if

$$
Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}
$$

 \blacksquare $F' = \{Q' | Q' \cap F \neq \emptyset\}$

Non-deterministic automaton $\boldsymbol{\mathcal{A}}$ Equivalent Det. automaton $\boldsymbol{\mathcal{A}}$

19.05.2021 Institute for Applied Information Processing and Communications

Complement of DFA

- The complement automaton A accepts exactly those words that are rejected by A
	- **How do we construct** \overline{A} **?**

25

Complement of DFA

- The complement automaton A accepts exactly those words that are rejected by A
- **Construction of** \overline{A}
	- 1. Substitution of accepting and non-accepting states

PAIK Consider NFA that accepts words that end with 001

PAIK Consider NFA that accepts words that end with 001

Let's try switching accepting and non-accepting states:

Is $\bar{\mathcal{A}}$ the complement of \mathcal{A} ?

 \mathcal{A}

PAIK Consider NFA that accepts words that end with 001

Let's try switching accepting and non-accepting states:

The language of this automaton is {0,1}* - this is wrong!

 $\mathcal{A}% _{A}=\mathcal{A}_{A}\mathcal{A}_{A}$

Complement of NFA

- The complement automaton A accepts exactly those words that are rejected by A
- **Construction of** \overline{A}
	- 1. Determinization: Convert NFA to DFA
	- 2. Substitution of accepting and non-accepting states

Intersections of NFAs

- **EXEDEN** Given two languages, L_1 and L_2 , the intersection of L_1 and L_2 is $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$
- Regular languages are closed under Union, Intersection, Concatenation, and Complementation

31

Intersections of NFAs

- **EXEDEN** Given two languages, L_1 and L_2 , the intersection of L_1 and L_2 is $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$
- Product automaton of $A = A_1 \times A_2$ has $L(A) = L(A_1) \cap L(A_2)$
	- $Q = Q_1 \times Q_2$ (Cartesian product),
	- $\Delta((q_1, q_2), a) = (\Delta_1(q_1, a), \Delta_2(q_2, a))$
	- $q_0 = (q_{01}, q_{02})$

32

IIAIK

■ $(q_1, q_2) \in F$ iff $q_1 \in F_1$ and $q_2 \in F_2$

Intersections of NFAs

- **EXEDEN** Given two languages, L_1 and L_2 , the intersection of L_1 and L_2 is $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$
- Product automaton of $A = A_1 \times A_2$
	- $Q = Q_1 \times Q_2$ (Cartesian product),
	- $\Delta((q_1, q_2), a) = (\Delta_1(q_1, a), \Delta_2(q_2, a))$
	- $q_0 = (q_{01}, q_{02})$

33

IIAIK

■ $(q_1, q_2) \in F$ iff $q_1 \in F_1$ and $q_2 \in F_2$

 $A = A_1 \times A_2$

- 1. States: (s_0, t_0) , (s_0, t_1) , (s_1, t_0) , (s_1, t_1) .
- 2. Initial state: (s_0, t_0) .
- 3. Accepting states: (s_0,t_0) , (s_0,t_1) .

Intersections of NFAs

 $L(A_1) = (a+b)^*a + \varepsilon$ (words ending with 'a' + empty word)

$$
L(A_2) = (ba)^* + (ba)^*b
$$

 $L(A_1 \times A_2) = (ba)^*$

Outline

■ Finite automata on finite words

38

IIAIK

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

- An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinite number of times.
	- **inf() ∩ ≠** ∅

39

IIAIK

- An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinite number of times.
	- **inf() ∩ ≠** ∅

40

IIAIK

■ $\mathcal{L}(\mathcal{B}) \subseteq \Sigma^\omega$ is the set of all infinite words that **B** accepts

- An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinite number of times.
	- **inf() ∩ ≠** ∅

41

IIAIK

- $\mathcal{L}(\mathcal{B}) \subseteq \Sigma^\omega$ is the set of all infinite words that **B** accepts
- Languages accepted by finite automata on infinite words are called **ω***-regular languages***.**

- is accepting ⇔ **inf() ∩ ≠** ∅
- What is the language of this automaton?

42

IIAIK

▪ is accepting ⇔ **inf() ∩ ≠** ∅

Language of Bücho Automaton \bm{B}

 $\mathcal{L}(\mathcal{B}) =$ {words with an Infinite number of a's} or $\mathcal{L}(\mathcal{B}) = (\{a,b\}^*)\omega$

 ρ is accepting \Leftrightarrow **inf(** ρ) ∩ **F** \neq Ø

Language of Bücho Automaton \bm{B} **• Can you express it in LTL?**

 $\mathcal{L}(\mathcal{B}) =$ {words with an Infinite number of a's} or $\mathcal{L}(\mathcal{B}) = (\{a,b\}^*)\omega$

▪ is accepting ⇔ **inf() ∩ ≠** ∅

45

IIAIK

Language of Bücho Automaton \bm{B}

 $\mathcal{L}(\mathcal{B}) =$ {words with an Infinite number of a's} or $\mathcal{L}(\mathcal{B}) = (\{a,b\}^*)\omega$ **In LTL:** *GF(a)*

Outline

■ Finite automata on finite words

46

IIAIK

- Automata on infinite words (Büchi automata)
- **Deterministic vs non-deterministic Büchi automata**
- **Intersection of Büchi automata**
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

- **EXEC** Deterministic Büchi automata are strictly less expressive than nondeterministic ones.
	- That is, not every nondeterministic Büchi automaton has an equivalent deterministic Büchi one.

Lemma 1: Let **B** be a deterministic Büchi automaton. Then, $\forall w \in \Sigma^\omega$, $w \in \mathcal{L}(\mathcal{B}) \Leftrightarrow \exists$ infinitely many finite prefixes of w on which \bm{B} reaches an accepting state.

Lemma 1: Let **B** be a deterministic Büchi automaton. Then, $\forall w \in \Sigma^\omega$, $w \in \mathcal{L}(\mathcal{B}) \Leftrightarrow \exists$ infinitely many finite prefixes of w on which \bm{B} reaches an accepting state.

Proof sketch:

A deterministic automaton \bm{B} has exactly one run on each word w. This run is accepting ⇔ a state $q \in F$ is reached an infinite number of times \Leftrightarrow on infinitely many prefixes of w, q is reached.

Theorem: There exists a non-deterministic Büchi automaton \bm{B} for which there is no equivalent deterministic one.

Theorem: There exists a non-deterministic Büchi automaton \bm{B} for which there is no equivalent deterministic one.

Proof: Consider **B** below. What is its language? (Also in LTL)

Theorem: There exists a non-deterministic Büchi automaton \bm{B} for which there is no equivalent deterministic one.

Proof: Consider **B** below. What is its language?

 $\mathcal{L}(\mathcal{B}) =$ {words with a finite number of a's} or $\mathcal{L}(\mathcal{B}) = \{\text{a},\text{b}\}^*\text{b}^\omega$

In LTL : FG-a or **FG**b

20.05.2021 Institute for Applied Information Processing and Communications

IIAIK 53

Det. and Non-det. Büchi Automata

Proof:

Consider **B** below. $\mathcal{L}(\mathcal{B})$ ={words with finitely many a's}. Assume there exists deterministic $\mathcal{L}(\mathcal{L}) = \mathcal{L}(\mathcal{B})$. Note that for any finite word σ , $\sigma \cdot b^{\omega} \in \mathcal{L}(\mathcal{B})$, so $\mathcal C$ accepts $\sigma \cdot b^{\omega}$ as well.

Since $b^{\omega} \in \mathcal{L}(C)$ **, there is an accepting state** $q_1 \in F$ **, so** that the run on b[®] passes through q_1 after bⁿ¹

- **Since** $b^{\omega} \in \mathcal{L}(C)$ **, there is an accepting state** $q_1 \in F$ **, so** that the run on b[®] passes through q_1 after bⁿ¹
- **Since bⁿ¹ab**^{ω} \in $\mathcal{L}(C)$, there is $q_2 \in F$, so that the run on bⁿ¹ab[®] passes through q_2 after bⁿ¹abⁿ²

- **Since** $b^{\omega} \in \mathcal{L}(C)$ **, there is an accepting state** $q_1 \in F$ **, so** that the run on b[®] passes through q_1 after bⁿ¹
- **Since bⁿ¹ab**^{ω} \in $\mathcal{L}(C)$, there is $q_2 \in F$, so that the run on bⁿ¹ab[®] passes through q_2 after bⁿ¹abⁿ²
- **E** Since $b^{n_1}ab^{n_2}ab^{\omega} \in \mathcal{L}(C)$, there is $q_3 \in F$, so that the run on bⁿ¹abⁿ²ab^{ω} passes through q_3 after bⁿ¹abⁿ²abⁿ³
- And so on…

- **Since** $b^{\omega} \in \mathcal{L}(C)$ **, there is an accepting state** $q_1 \in F$ **, so** that the run on b[®] passes through q_1 after bⁿ¹
- **Since bⁿ¹ab**^{ω} \in $\mathcal{L}(C)$, there is $q_2 \in F$, so that the run on bⁿ¹ab[®] passes through q_2 after bⁿ¹abⁿ²
- **E** Since $b^{n_1}ab^{n_2}ab^{\omega} \in \mathcal{L}(C)$, there is $q_3 \in F$, so that the run on bⁿ¹abⁿ²ab^{ω} passes through q_3 after bⁿ¹abⁿ²abⁿ³
- And so on…
- **For every k, there is** $q_k \in F$ **, reached after** $b^{n1}ab^{n2}...ab^{nk}$

EXET Since \boldsymbol{c} is deterministic, there is one run going through q_1 q_2 q_3 … q_k

- **EXA** Since C is deterministic, there is one run going through q_1 q_2 q_3 … q_k
- **F** is finite therefore there is j<l such that $q_i = q_l$

- **EXA** Since C is deterministic, there is one run going through q_1 q_2 q_3 … q_k
- **F** is finite therefore there is j<l such that $q_i = q_l$
- **Thus, in C there is a lasso-shape run that goes through** q_i infinitely often, passing through a infinitely often.

- Since \bm{c} is deterministic, there is one run going through q_1 q_2 q_3 … q_k
- **F** is finite therefore there is j<l such that $q_i = q_l$
- **Thus, in C there is a lasso-shape run that goes through** q_i infinitely often, passing through a infinitely often.
- This run is accepting a word with infinitely many a.

- Since \bm{c} is deterministic, there is one run going through q_1 q_2 q_3 … q_k
- **F** is finite therefore there is j<l such that $q_i = q_l$
- **Thus, in C there is a lasso-shape run that goes through** q_i infinitely often, passing through a infinitely often.
- **This run is accepting a word with infinitely many a.**
- A contradiction!
- **Conclusion:** there is no det. automaton, equivalent to B . \Box

Lemma 2: Deterministic Büchi automata are not closed under complementation.

20.05.2021

Proof Idea for Lemma 2?

E Hint: Consider the language $\mathcal{L}(\mathcal{A}) = \{$ words with infinitely many a's $\}$.

Lemma 2: Deterministic Büchi automata are not closed under complementation.

Proof:

- Consider the language $\mathcal{L} = \{$ words with infinitely many a's $\}$.
- **Construct a deterministic Büchi automaton A that accepts** \mathcal{L} **.**

Lemma 2: Deterministic Büchi automata are not closed under complementation.

Proof:

- Consider the language $\mathcal{L} = \{$ words with infinitely many a's $\}$.
- **Construct a deterministic Büchi automaton A that accepts** \mathcal{L} **.**
- **EXEDEE** Its complement is $\mathcal{L} = \{$ words with finitely many a's $\}$, for which there is no deterministic Büchi automaton (see Theorem).

20.05.2021 Institute for Applied Information Processing and Communications

Theorem: Nondeterministic Büchi automata are closed under complementation.

- The construction is very complicated. We will not see it here.
- Originally Büchi showed an algorithm for complementation that is double exponential in the size n of the automaton
- Mooly Safra (Tel-Aviv University) proved that it can be done by

2 O(n log n)

Outline

■ Finite automata on finite words

67

IIAIK

- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- **Intersection of Büchi automata**
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

- What is $\mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$?
- **•** The language $\mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2) =$ $\{words with an infinite number of a's and infinite number of b's\} - not empty$

■ $\mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2) =$ {words with an infinite number of a's and infinite number of b's}

- $\mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2) =$ {words with an infinite number of a's and infinite number of b's}
- What do you get if you build the standard intersection?

- $\mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2) =$ {words with an infinite number of a's and infinite number of b's}
- What do you get if you build the standard intersection?

- $\mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2) =$ {words with an infinite number of a's and infinite number of b's}
- A standard intersection does not work the automaton will not have any accepting states!

Intersection of Büchi Automata

- **•** Given $\mathbf{B}_1 = (\Sigma, \mathbf{Q}_1, \mathbf{\Delta}_1, \mathbf{Q}_1^0, \mathbf{F}_1)$ and $\mathbf{B}_2 = (\Sigma, \mathbf{Q}_2, \mathbf{\Delta}_2, \mathbf{Q}_2^0, \mathbf{F}_2)$
- $\mathbf{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$ is defined as follows:
	- \bullet Q = Q₁ \times Q₂ \times {0, 1, 2}
	- \bullet Q⁰ = Q₁⁰ × Q₂⁰ × Q₂⁰
	- \blacksquare **F** = $Q_1 \times Q_2 \times \{2\}$

73

IIAIK

Intersection of Büchi Automata

```
((q_1,q_2,x), a, (q'_{1},q'_{2},x')) \in \Delta \iff(1) (q_1, a, q'_1) \in \Delta_1 and (q_2, a, q'_2) \in \Delta_2 and
(2) If x=0 and q'_{1} \in F_{1} then x'=1If x=1 and q'_{2} \in F_{2} then x'=2If x=2 then x'=0Else, x'=x
```
74

IIAIK

Explanation: $x=0$ is waiting for an accepting state from F_1 $x=1$ is waiting for an accepting state from F_2

Secure & Correct Systems

20.05.2021 Institute for Applied Information Processing and Communications

19.05.2021 Institute for Applied Information Processing and Communications

