

Graz University of Technology Institute for Applied Information Processing and Communications

Temporal Logic Bettina Könighofer

Model Checking SS21

April 22nd 2021

Institute for Applied Information Processing and Communications 23.04.2021

Warm Up

Translate sentences to formulas

• "If today is Tuesday, tomorrow is Wednesday."

• "This lecture is exciting and not boring."

Warm Up

Translate sentences to formulas

• "If today is Thursday, then tomorrow is Friday."

p... today is Tuesday, q... tomorrow is Wednesday $p \rightarrow q$

• "This lecture is exciting and not boring."

p... This lecture is exciting , q... This lecture is boring $p \land \neg q$

Institute for Applied Information Processing and Communications 23.04.2021

Secure & Correct Systems

Modeling a reactive system Kripke structure

Modeling a reactive system Kripke structure

Properties of Kripke Structures

Write properties as formulas

Properties

- Always when the robot visits A, it visits C within the next two steps.
- The robot can visit C within the next two steps after visiting A

ΙΙΑΙΚ **Propositional Temporal Logic** AP - a set of atomic propositions, $p,q \in AP$ **Temporal operators:** Хр Ο \cap \cap Gp Fp Ο \cap pUq Ο \cap \cap pRq Ο ()()Path quantifiers: A for all paths E there exists a path

Institute for Applied Information Processing and Communications 23.04.2021

8

^{Properties of Kripke Structures}

Structures

Write properties as formulas

E there exists a path

Properties

- Always when the robot visits A, it visits C within the next two steps.
- The robot can visit C within the next two steps after visiting A

В

Properties of Kripke Structures

E there exists a path

Properties

- Always when the robot visits A, it visits C within the next two steps.
- The robot can visit C within the next two steps after visiting A

$$A G (a \rightarrow Xc \lor XXc)$$

 $E G (a \rightarrow Xc \lor XXc)$

В

LIAIK **Properties of Kripke Structures** 11

, A ¥ ¥ ⋘ **Temporal Operators F**... eventually

Write properties as formulas

Path quantifiers

A for all paths

X... next

G... globally

E there **exists** a path

Properties

- The robot *never* visits X
- It is possible that the robot *never* visits X

В

С

Properties of Kripke Structures

Properties

- The robot *never* visits X
- It is possible that the robot *never* visits X

, A

В

С

$$A G \neg x$$

 $E G \neg x$

LIAIK **Properties of Kripke Structures** 13

Properties

,A В **Temporal Operators**

С

E there **exists** a path

X... next

G... globally

F... eventually

A for all paths

Path quantifiers

Write properties as formulas

- The robot can visit A and C *infinitely often*.
- The robot always visits A *infinitely often*, but **C** only *finitely often*.

LIAIK **Properties of Kripke Structures** 14

Properties

X... next

G... globally

F... eventually

A for all paths

Path quantifiers

E there **exists** a path

Write properties as formulas

The robot can visit A and C *infinitely often*.

 $A (GF a \land GF c)$

The robot always visits A *infinitely often*, but **C** only *finitely often*.

 $E(GF a \wedge FG \neg c)$

Properties of Kripke Structures

Properties

Temporal Operators

X... next

G... globally

F... eventually

Path quantifiers

A for **all** paths

E there exists a path

Write properties as formulas

 If the robot visits A *infinitely often*, it should also visit C *finitely often*.

LIAIK **Properties of Kripke Structures** 16

,A ¥ ¥ ⋘ **Temporal Operators**

X... next

G... globally

F... eventually

A for all paths

Path quantifiers

E there **exists** a path

Write properties as formulas

If the robot visits A *infinitely often*, ۲ it should also visit **C** finitely often.

Properties

 $A (GF a \rightarrow GFc)$

В

С

Paths and Suffixes

- $\pi = s_0, s_1, \dots$ is an *infinite* path in *M* from a state s if • $s = s_0$ and
 - for all $i\geq 0, \ (s_i,\,s_{i+1}) \in R$

ΠΑΙΚ

18

ΙΙΑΙΚ **Propositional Temporal Logic** 19 Temporal operators: Describe properties that hold along π 0 \bigcirc Ο Xp Gp 0 Fp \bigcirc \cap pUq 0 \bigcirc \bigcirc

Propositional Temporal Logic

Path quantifiers:

ΙΙΔΙΚ

20

- A for all paths starting from s have property φ
- **E** there **exists** a path starting from **s** have property ϕ
- Use combination of A and E to describe branching structure in tree

- Path Formulas:
 - $\pi_1 \vDash \text{Gb}$
 - $\pi_2 \not\models \text{Gb}$

Path Formulas: $\pi_1 \models Gb$ $\pi_2 \not\models Gb$ State Formulas: $s_0 \models EG b$ $s_0 \not\models AG b$

ΙΙΑΙΚ

23

Does s_0 satisfy the following formula? $s_0 \square EXX (a \land b)$

• $s_0 \square EXAX (a \land b)$

- Does s_0 satisfy the following formula? $s_0 \models EXX (a \land b)$
 - $s_0 \not\models \text{EXAX} (a \land b)$

ΙΙΑΙΚ

25

Syntax of CTL*

Two types of formulas in the inductive definition

State formulas

ΙΙΑΙΚ

26

Path formulas

State formulas are true in a specific state

State formulas are true in a specific state

Inductive definition of state formulas:

State formulas are true in a specific state

Inductive definition of state formulas:

• $p \in AP$

State formulas are true in a specific state

Inductive definition of state formulas:

- $p \in AP$
- $\neg f_1, f_1 \lor f_2, f_1 \land f_2$ where f_1, f_2 are state formulas

State formulas are true in a specific state

Inductive definition of state formulas:

- $p \in AP$
- $\neg f_1, f_1 \lor f_2, f_1 \land f_2$ where f_1, f_2 are state formulas
- Eg, Ag where g is a path formula

Path formulas are true along a specific path

Inductive definition of path formulas:

Path formulas are true along a specific path

Inductive definition of path formulas:

If *f* is a state formula, then *f* is also a path formula

Path formulas are true along a specific path

Inductive definition of path formulas:

- If *f* is a state formula, then *f* is also a path formula
- $\neg g_1, g_1 \lor g_2, g_1 \lor g_2, Xg_1, Gg_1, Fg_1, g_1Ug_2$, g_1Rg_2 where g_1, g_2 are path formulas

Path formulas are true along a specific path

Inductive definition of path formulas:

- If *f* is a state formula, then *f* is also a path formula
- $\neg g_1, g_1 \lor g_2, g_1 \lor g_2, Xg_1, Gg_1, Fg_1, g_1Ug_2$, g_1Rg_2 where g_1, g_2 are path formulas

CTL* is the set of all state formulas

- Kripke Structure $M = (S, S_0, R, AP, L)$
 - $\pi = s_0, s_1, \dots$ is an infinite path in M
- π^{i} the suffix of π , starting at s_i

ΙΙΑΙΚ

- Kripke Structure $M = (S, S_0, R, AP, L)$
 - $\pi = s_0, s_1, \dots$ is an infinite path in M
- π^{i} the suffix of π , starting at s_i
- For state formulas:

ΙΑΙΚ

38

• $M, s \models f \dots$ the **state** formula f holds in state s of M

- Kripke Structure $M = (S, S_0, R, AP, L)$
 - $\pi = s_0, s_1, \dots$ is an infinite path in M
- π^{i} the suffix of π , starting at s_i
- For state formulas:

ΙΔΙΚ

- $M, s \models f \dots$ the **state** formula f holds in state s of M
- For path formulas:
 - $M, \pi \models g \dots$ the **path** formula g holds along π in M

State formulas:

ΙΔΙΚ

- M, $s \models p \iff p \in L(s)$
- M, $s \models E f \iff$ there is a path π from s such that M, $\pi \models f$
- M, $s \models Ag \iff$ for every path π from s, M, $\pi \models g$
- Boolean combination (\land, \lor, \neg) the usual semantics

Semantics of path formulas - summary

If p,q are state formulas, then:

But in the general case, they can be path formulas

Path formulas:

ΙΙΑΙΚ

42

• M, $\pi \models$ f, where f is a state formula \Leftrightarrow M, s₀ \models f

Path formulas:

ΙΙΑΙΚ

43

• M, $\pi \models Xg$, where g is a path formula \Leftrightarrow M, $\pi^1 \models g$

Path formulas:

• M, $\pi \models \mathbf{G}g \Leftrightarrow$ for every i ≥ 0 , M, $\pi^i \models g$

⊨ G g

Semantics of CTL*

Path formulas:

• M, $\pi \models \mathbf{G}g \Leftrightarrow$ for every i ≥ 0 , M, $\pi^i \models g$

Path formulas:

M, $\pi \models \mathbf{G}g \Leftrightarrow$ for every i ≥ 0 , M, $\pi^i \models g$

• M, $\pi \models \mathbf{Fg} \Leftrightarrow$ there exists k ≥ 0 , such that M, $\pi^{k} \models g$

Secure & Correct Systems

Semantics of CTL*

Path formulas:

ΙΙΑΙΚ

47

• M, $\pi \models \mathbf{Fg} \Leftrightarrow$ there exists k ≥ 0 , such that M, $\pi^{k} \models \mathbf{g}$

Path formulas:

ΙΙΑΙΚ

48

• M, $\pi \models \mathbf{Fg} \Leftrightarrow$ there exists k ≥ 0 , such that M, $\pi^{k} \models \mathbf{g}$

• M, $\pi \models g_1 \cup g_2 \Leftrightarrow$ there exists $k \ge 0$, such that M, $\pi^k \models g_2$ and for every $0 \le j < k$, M, $\pi^j \models g_1$

Path formulas:

ΙΙΑΙΚ

49

• M, $\pi \vDash g_1 \mathbb{R} g_2 \Leftrightarrow$ for all j ≥ 0 , if for every i<j M, $\pi^i \nvDash g_1$ then M, $\pi^j \vDash g_2$

More about R ("release")

 Intuitively, once g₁ becomes true, it "releases" g₂ If g₁ never becomes true then g₂ stays true forever

51

More about R ("release")

Intuitively, once g₁ becomes true, it "releases" g₂ If g₁ never becomes true then g₂ stays true forever

• $\mathbf{g}_1 \mathbf{R} \mathbf{g}_2 \equiv (\mathbf{g}_2 \mathbf{U} (\mathbf{g}_1 \wedge \mathbf{g}_2)) \vee \mathbf{G} \mathbf{g}_2$

• $M \models f \iff$ for all initial states $s_0 \in S_{0:}$ $M, s_0 \models f$

IIAIK

M ⊨ f ⇔ for all initial states s₀ ∈ S₀. M, s₀ ⊨ f Example: Does M ⊨ EX p or M ⊨ ¬EX p ?

ΙΙΑΙΚ

M ⊨ f ⇔ for all initial states s₀ ∈ S₀, M, s₀ ⊨ f Example: Does M ⊨ EX p or M ⊨ ¬EX p ?

Institute for Applied Information Processing and Communications 23.04.2021

ΙΙΑΙΚ

M ⊨ f ⇔ for all initial states s₀ ∈ S₀, M, s₀ ⊨ f Example: Does M ⊨ EX p or M ⊨ ¬EX p ?

Institute for Applied Information Processing and Communications 23.04.2021

ΙΙΑΙΚ

- $M \models f \iff$ for all initial states $s_0 \in S_0$, $M, s_0 \models f$
- Example: Does $M \models EX p$ or $M \models \neg EX p$?

Institute for Applied Information Processing and Communications 23.04.2021

IIAIK

Question:

 Given a, b ∈ AP How do all paths that satisfy (Fb) U a look like?

Exercise 1

Question:

ΙΑΙΚ

59

 Given a, b ∈ AP How do all paths that satisfy (Fb) U a look like?

SCOS Secure & Correct Systems

Question:

For $p \in AP$, what are the meaning of the following formulas? That is, when does π satisfy each of the formulas:

- π ⊨ **GF** p
- π ⊨ **FG** p

Exercise 2

Question:

IAIK

61

For $p \in AP$, what are the meaning of the following formulas? That is, when does π satisfy each of the formulas:

- $\pi \models \mathbf{GFp}$ Infinitely often p along π
- $\pi \models \mathbf{FG} p$ Finitely often $\neg p$ along π

Question:

For $p \in AP$, what are the meaning of the following formulas? That is, when does s satisfy each of the formulas:

- s ⊨ **EGF** p
- s ⊨ **EG EF** p
- $\pi \models \mathbf{GF} \mathbf{p}$ Infinitely often p along π
- $\pi \models \mathbf{FG} p$ Finitely often $\neg p$ along π

Exercise 2

Question:

ΙΙΑΙΚ

63

For $p \in AP$, what are the meaning of the following formulas? That is, when does s satisfy each of the formulas:

- $S \models EGF p$ There exists a path with satisfies infinitely often p
- S = EGEF p There exists a path in which we can reach p from all states
- $\pi \models \mathbf{GF} \mathbf{p}$ Infinitely often p along π
- $\pi \models \mathbf{FG} p$ Finitely often $\neg p$ along π

Secure & Correct Systems

Question:

When does π satisfy the formula:

■ π ⊨ (**G**a) **U** (**G**b)

Answer:

Institute for Applied Information Processing and Communications 23.04.2021

65

Question:

When does π satisfy the formula:

Exercise 3

Answer:

• (Ga) U (Gb) \equiv Gb \vee (Ga \wedge FGb)

Properties of CTL*

The operators \vee , \neg , X, U, E are sufficient to express any CTL* formula:

- $f \wedge g \equiv \neg(\neg f \vee \neg g)$
- $f \mathbf{R} g \equiv \neg(\neg f \mathbf{U} \neg g)$
- $\mathbf{F} \mathbf{f} \equiv \text{true } \mathbf{U} \mathbf{f}$

ΙΙΑΙΚ

- G f = ¬ F ¬f
- $\mathbf{A}(\mathbf{f}) \equiv \neg \mathbf{E}(\neg \mathbf{f})$

Negation Normal Form (NNF)

- Formulas in Negation Normal Form (NNF) are formulas in which negations are applied only to atomic propositions
- Every CTL* formula is equivalent to a CTL* formula in NNF
- Negations can be "pushed" inwards.

```
\neg \mathbf{E} \mathbf{f} \equiv \mathbf{A} \neg \mathbf{f}
\neg \mathbf{G} \mathbf{f} \equiv \mathbf{F} \neg \mathbf{f}
\neg \mathbf{X} \mathbf{f} \equiv \mathbf{X} \neg \mathbf{f}
\neg (\mathbf{f} \mathbf{U} \mathbf{g}) \equiv (\neg \mathbf{f} \mathbf{R} \neg \mathbf{g})
```


Transforming a formula into NNF:

Negation Normal Form (NNF)

Negations can be "pushed" inwards.

$$\neg \mathbf{G} \mathbf{f} \equiv \mathbf{F} \neg \mathbf{f}$$

$$\neg \mathbf{X} \mathbf{f} \equiv \mathbf{X} \neg \mathbf{f}$$

$$\neg (\mathbf{f} \mathbf{U} \mathbf{g}) \equiv (\neg \mathbf{f} \mathbf{R} \neg \mathbf{g})$$

- **Example:** Transforming a formula into NNF:
- \neg ((a U b) \vee F c) = (\neg (a U b) $\wedge \neg$ F c) = (((¬a) **R** (¬b)) ∧ (**G** ¬c)

Useful sublogics of CTL*

- CTL, ACTL and ACTL* are branching-time temporal logics
 - Can describe the branching of the computation tree by applying nested path quantifications
 - LTL is a linear-time temporal logic

ΙΔΙΚ

- Describes the paths in the computation tree, using only one, outermost universal quantification
- CTL and LTL are most widely used

LTL/CTL/CTL*

LTL consists of state formulas of the form Af

ΙΙΑΙΚ

71

- f is a path formula, containing no path quantifiers
- LTL is interpreted over infinite computation paths

CTL consists of state formulas, where path quantifiers and temporal operators appear in **pairs**:

- AG, AU, AX, AF, AR, EG, EU, EX, EF, ER
- CTL is interpreted over infinite computation trees

CTL* allows any combination of temporal operators and path quantifiers. It includes both LTL and CTL

State formulas:

Af where f is a path formula

Path formulas:

- $p \in AP$
- $\neg f_1, f_1 \lor f_2, f_1 \land f_2, Xf_1, Gf_1, Ff_1, f_1 Uf_2, f_1 Rf_2$ where f_1 and f_2 are path formulas

LTL

LTL is the set of all state formulas

CTL is the set of all state formulas, defined below (by means of state formulas only):

ΙΙΑΙΚ

73

- $\blacksquare \qquad \neg g_1, \quad g_1 \lor g_2, \quad g_1 \land g_2$
- AX g_1 , AG g_1 , AF g_1 , A $(g_1 U g_2)$, A $(g_1 R g_2)$
- **EX** g_1 , **EG** g_1 , **EF** g_1 , **E** $(g_1 U g_2)$, **E** $(g_1 R g_2)$

where g_1 and g_2 are state formulas

Institute for Applied Information Processing and Communications 23.04.2021

