

Graz University of Technology Institute for Applied Information Processing and Communications

Temporal Logic Bettina Könighofer

Model Checking SS21 April 22nd 2021

23.04.2021 Institute for Applied Information Processing and Communications

Translate sentences to formulas

• "If today is Tuesday, tomorrow is Wednesday."

• "This lecture is exciting and not boring."

Warm Up

Translate sentences to formulas

"If today is Thursday, then tomorrow is Friday."

 $p...$ today is Tuesday, q... tomorrow is Wednesday $p \rightarrow q$

• "This lecture is exciting and not boring."

 $p...$ This lecture is exciting, q… This lecture is boring

 $p \wedge \neg q$

Secure & Correct Systems

Modeling a reactive system Kripke structure

Modeling a reactive system Kripke structure

Properties Write properties as formulas

- Always when the robot visits **A**, it visits **C** within the next two steps.
- The robot can visit **C** within the next two steps after visiting **A**

IIAIK Propositional Temporal Logic 8 $AP - a$ set of atomic propositions, $p,q \in AP$ Temporal operators: **X**p ∩ ∩ \bigcirc **G**p **F**p \bigcirc \bigcirc p**U**q \bigcirc \bigcirc \bigcirc p**R**q \bigcirc \bigcirc \bigcirc Path quantifiers: **A** for **all** paths **E** there **exists** a path

A for **all** paths

E there **exists** a path

X… next

Properties Write properties as formulas

- Always when the robot visits **A**, it visits **C** within the next two steps.
- The robot can visit **C** within the next two steps after visiting **A**

B

С

 \mathbb{S}^1 美
人 **Temporal Operators X**… next **G**… globally **F**… eventually **Path quantifiers A** for **all** paths

E there **exists** a path

Properties Write properties as formulas

- Always when the robot visits **A**, it visits **C** within the next two steps.
- The robot can visit **C** within the next two steps after visiting **A**

$$
A G (a \rightarrow Xc \vee XXc)
$$

$$
E G (a \rightarrow Xc \vee XXc)
$$

B.A 美
文 **Temporal Operators F**… eventually

Path quantifiers

A for **all** paths

X… next

G… globally

E there **exists** a path

Properties Write properties as formulas

- The robot *never* visits **X**
- It is possible that the robot *never* visits **X**

B

C

- The robot *never* visits **X**
- It is possible that the robot *never* visits **X**

23.04.2021 Institute for Applied Information Processing and Communications

B.A

B

C

$$
A\ G\ \neg x
$$

 $E G - x$

Temporal Operators

X… next

G… globally

F… eventually

Path quantifiers

A for **all** paths

E there **exists** a path

Properties Write properties as formulas

- The robot can visit **A** and **C** *infinitely often.*
- The robot always visits **A** *infinitely often*, but **C** only *finitely often*.

-
- **G**… globally
- **F**… eventually

Path quantifiers

A for **all** paths

E there **exists** a path

Properties Write properties as formulas

• The robot can visit **A** and **C** *infinitely often.*

 $A(GF \alpha \wedge GF \ c)$

• The robot always visits **A** *infinitely often*, but **C** only *finitely often*.

 $E(GF \alpha \wedge FG \neg c)$

B.A 美
文

B

C

X… next **G**… globally

F… eventually

Path quantifiers

A for **all** paths

E there **exists** a path

Temporal Operators

Properties Write properties as formulas

• If the robot visits **A** *infinitely often,* it should also visit **C** *finitely often*.

B.A B C 美
文

Properties Write properties as formulas

• If the robot visits **A** *infinitely often,* it should also visit **C** *finitely often*.

 $A(GF \ a \rightarrow GFc)$

Paths and Suffixes

- $\tau = s_0, s_1, \ldots$ is an *infinite* path in *M* from a state s if
	- \bullet s = s₀ and

18

HAIK

• for all $i \ge 0$, $(s_i, s_{i+1}) \in R$

Propositional Temporal Logic

Path quantifiers:

20

IIAIK

- A for all paths starting from s have property φ
- **E** there exists a path starting from s have property φ
- Use combination of **A and E** to describe branching structure in tree

State Formulas and Path Formulas

- Path Formulas:
	- π_1 \models Gb
	- $\pi_2 \neq Gb$

State Formulas and Path Formulas

■ Path Formulas: ■ π_1 \models Gb ■ $\pi_2 \neq Gb$ ■ State Formulas: ■ s_0 \models EG b ■ $s_0 \neq AG$ b

23

IIAIK

a,b

Does s_0 satisfy the following formula? \blacksquare s_0 EXX (a \wedge b)

 \bullet s_0 EXAX (a \wedge b)

IIAIK State Formulas and Path Formulas 25

- Does s_0 satisfy the following formula? ■ s_0 \models EXX (a \wedge b)
	- $s_0 \neq$ EXAX (a \wedge b)

Syntax of CTL*

Two types of formulas in the inductive definition

■ State formulas

26

IIAIK

■ Path formulas

State formulas are true in a specific state

State formulas are true in a specific state

Inductive definition of state formulas:

State formulas are true in a specific state

Inductive definition of state formulas:

■ $p \in AP$

State formulas are true in a specific state

Inductive definition of state formulas:

- $p \in AP$
- \blacksquare $\neg f_1, f_1 \lor f_2, f_1 \land f_2$ where f_1, f_2 are state formulas

State formulas are true in a specific state

Inductive definition of state formulas:

- $p \in AP$
- \blacksquare $\neg f_1, f_1 \lor f_2, f_1 \land f_2$ where f_1, f_2 are state formulas
- **Eg, Ag** where q is a path formula

Path formulas are true along a specific path

Inductive definition of path formulas:

Path formulas are true along a specific path

Inductive definition of path formulas:

If f is a state formula, then f is also a path formula

Path formulas are true along a specific path

Inductive definition of path formulas:

- **.** If f is a state formula, then f is also a path formula
- \blacksquare \lnot g_1 , $g_1 \vee g_2$, g_1 , g_2 , Xg_1 , \lnot Gg_1 , \lnot g_1 , g_1 **U** g_2 , $\,g_{\,1}\bm R\;g_{\,2}$ where $g_{\,1}$, $g_{\,2}$ are path formulas

Path formulas are true along a specific path

Inductive definition of path formulas:

- If f is a state formula, then f is also a path formula
- \blacksquare \lnot g_1 , $g_1 \vee g_2$, g_1 , g_2 , Xg_1 , \lnot Gg_1 , \lnot g_1 , g_1 **U** g_2 , $\,g_{\,1}\bm R\;g_{\,2}$ where $g_{\,1}$, $g_{\,2}$ are path formulas

CTL^{*} is the set of all **state** formulas

- **E** Kripke Structure $M = (S, S_0, R, AP, L)$
- $\tau = s_0, s_1, \ldots$ is an infinite path in M
- \blacksquare π^i the suffix of π , starting at s_i

37

- Kripke Structure $M = (S, S_0, R, AP, L)$
- $\tau = s_0, s_1, \ldots$ is an infinite path in M
- \blacksquare π^i the suffix of π , starting at s_i
- **•** For state formulas:

38

IIAIK

■ $M, s \vDash f$... the **state** formula f holds in state s of M

- Kripke Structure $M = (S, S_0, R, AP, L)$
- $\tau = s_0, s_1, \ldots$ is an infinite path in M
- \blacksquare π^i the suffix of π , starting at s_i
- For state formulas:

39

 $\overline{\mathbf{H}}$ \mathbf{H}

- $M, s \vDash f$... the **state** formula f holds in state s of M
- For path formulas:
	- $M, \pi \vDash g$... the **path** formula g holds along π in M

State formulas:

40

- $M, s \vDash p \Leftrightarrow p \in L(s)$
- M, s \vDash **E** f \Leftrightarrow there is a path π from s such that M, $\pi \models f$
- M, $s \vDash A g \Leftrightarrow$ for every path π from s, M, $\pi \vDash g$
- **Boolean combination** (\wedge, \vee, \neg) the usual semantics

Semantics of path formulas - summary

If p,q are state formulas, then:

But in the general case, they can be path formulas

Path formulas:

42

IIAIK

■ M, $\pi \models f$, where f is a state formula $\Leftrightarrow M$, $s_0 \models f$

Path formulas:

43

IIAIK

■ M, π \in **X**g, where g is a path formula \Leftrightarrow M, π ¹ \in g

Path formulas:

■ M, $\pi \vDash Gg \Leftrightarrow$ for every i ≥0, M, $\pi^i \vDash g$

⊨ **G** g

Secure & Correct Systems

 \bigcirc

 \circ

 \bigcirc

Path formulas:

■ M, $\pi \vDash Gg \Leftrightarrow$ for every i ≥0, M, $\pi^i \vDash g$

■ M, π \vdash **F**g \Leftrightarrow there exists k ≥0, such that M, π ^k \vdash g

Secure & Correct Systems

Semantics of CTL*

Path formulas:

47

IIAIK

■ M, π \models **F**g \Leftrightarrow there exists k ≥0, such that M, π ^k \models g

Path formulas:

48

IIAIK

■ M, π \models **F**g \Leftrightarrow there exists k ≥0, such that M, π ^k \models g

■ M, $\pi \vDash g_1 \cup g_2 \Leftrightarrow$ there exists k ≥0, such that M, $\pi^k \vDash g_2$ and for every 0 \leq j<k, M, $\pi^{j} \vDash g_{1}$

Path formulas:

49

IIAIK

• M, $\pi \vDash g_1 \mathbf{R} g_2 \Leftrightarrow$ for all j ≥ 0 , if for every is M, $\pi^{\mathbf{i}} \nvDash g_1$ then M, $\pi^{j} \vDash g_{2}$

More about R ("release")

• Intuitively, once g_1 becomes true, it "releases" g_2 If g_1 never becomes true then g_2 stays true forever

IIAIK 51

More about R ("release")

Intuitively, once g_1 becomes true, it "releases" g_2 If g_1 never becomes true then g_2 stays true forever

• g_1 **R** g_2 \equiv $(g_2$ **U** $(g_1 \wedge g_2)) \vee$ **G** g_2

■ M \models f \Leftrightarrow for all initial states $s_0 \in S_{0}$: M, $s_0 \models f$

53

HAIK

■ M \vDash f \Leftrightarrow for all initial states $s_0 \in S_0$. M, $s_0 \vDash f$ Example: Does $M \vDash EX$ p or $M \vDash \neg EX$ p ?

23.04.2021 Institute for Applied Information Processing and Communications

54

■ M \vDash f \Leftrightarrow for all initial states $s_0 \in S_0$, M, $s_0 \vDash f$ Example: Does $M \vDash EX$ p or $M \vDash \neg EX$ p ?

23.04.2021 Institute for Applied Information Processing and Communications

55

■ M \vDash f \Leftrightarrow for all initial states $s_0 \in S_0$, M, $s_0 \vDash f$ Example: Does $M \vDash EX$ p or $M \vDash \neg EX$ p ?

23.04.2021 Institute for Applied Information Processing and Communications

56

- M \vDash f \Leftrightarrow for all initial states $s_0 \in S_0$, M, $s_0 \vDash f$
- Example: Does $M \vDash EX$ p or $M \vDash \neg EX$ p ?

23.04.2021 Institute for Applied Information Processing and Communications

57

Question:

• Given $a, b \in AP$ How do all paths that satisfy (**F**b) **U** a look like?

⁵⁹ Exercise 1

Question:

IIAIK

• Given $a, b \in AP$ How do all paths that satisfy (**F**b) **U** a look like?

Secure & Correct Systems

Question:

For $p \in AP$, what are the meaning of the following formulas? That is, when does π satisfy each of the formulas:

- $\pi \vDash$ **GF** p
- $π$ $∈$ **FG** p

Exercise 2

Question:

For $p \in AP$, what are the meaning of the following formulas? That is, when does π satisfy each of the formulas:

- $\pi \vDash$ **GF** p Infinitely often p along π
- $\pi \vDash \mathsf{FG}$ p Finitely often $\neg p$ along π

Question:

For $p \in AP$, what are the meaning of the following formulas? That is, when does s satisfy each of the formulas:

- s ⊨ **EGF** p
- s ⊨ **EG EF** p
- \blacksquare $\pi \vDash$ **GF** p Infinitely often p along π
- \blacksquare $\pi \vDash \mathsf{FG}$ p Finitely often $\neg p$ along π

Exercise 2

Question:

For $p \in AP$, what are the meaning of the following formulas? That is, when does s satisfy each of the formulas:

- s ⊨ **EGF** p There exists a path with satisfies infinitely often p
- S \vDash **EG EF** p There exists a path in which we can reach p from all states
- $π ⊨$ **GF** p Infinitely often p along π
- \blacksquare $\pi \vDash \mathsf{FG}$ p Finitely often $\neg p$ along π

Secure & Correct Systems

Question:

When does π satisfy the formula:

■ $π$ \models (**G**a) **U** (**G**b)

Answer:

23.04.2021 Institute for Applied Information Processing and Communications

Exercise 3

Question:

When does π satisfy the formula:

$$
\bullet \quad \pi \vDash (Ga) \mathsf{U} (Gb)
$$

Answer:

 \bullet (**G**a) **U** (**G**b) \equiv **G**b \vee (**G**a \wedge **FG**b)

TAIK 66 Properties of CTL^{*}

The operators v, \neg, X, U, E are sufficient to express any CTL* formula:

- $f \wedge g = \neg(\neg f \vee \neg g)$
- $f R g = \neg(\neg f U \neg g)$
- \blacksquare **F** f \blacksquare **true U** f
- \bullet **G** f \bullet \bullet \bullet **F** \neg f
- **•** $A(f) = -E(-f)$

TAIK Negation Normal Form (NNF)

- Formulas in Negation Normal Form (NNF) are formulas in which negations are applied only to atomic propositions
- Every CTL^{*} formula is equivalent to a CTL^{*} formula in NNF
- **EXE** Negations can be "pushed" inwards.

```
-E f = A - f-G f = F - f-X f \equiv X -f- ( f \cup g ) \equiv (-f R - g )
```


Secure & Correct Systems

$\frac{1}{20}$ Useful sublogics of CTL *

- CTL, ACTL and ACTL^{*} are branching-time temporal logics
	- Can describe the branching of the computation tree by applying nested path quantifications
	- LTL is a linear-time temporal logic
		- Describes the paths in the computation tree, using only **one, outermost universal quantification**
	- CTL and LTL are most widely used

TAIK
TAIREAD LTL/CTL/CTL*

LTL consists of state formulas of the form **A**f

- f is a path formula, containing no path quantifiers
- LTL is interpreted over infinite computation paths

CTL consists of state formulas, where path quantifiers and temporal operators appear in pairs:

- **AG**, **AU**, **AX**, **AF**, **AR**, **EG**, **EU**, **EX**, **EF**, **ER**
- CTL is interpreted over infinite computation trees

CTL* allows any combination of temporal operators and path quantifiers. It includes both LTL and CTL

$\overline{172}$ LTL

State formulas:

Af where f is a path formula

Path formulas:

- \blacksquare $p \in AP$
- **•** $-f_1$, $f_1 \vee f_2$, $f_1 \wedge f_2$, Xf_1 , Gf_1 , Ff_1 , $f_1 Uf_2$, $f_1 Rf_2$ where f_1 and f_2 are path formulas

LTL is the set of all **state** formulas

CTL is the set of all state formulas, defined below (by means of state formulas only):

- $p \in AP$
- **•** $\neg g_1, g_1 \lor g_2, g_1 \land g_2$
- **AX** g_1 , **AG** g_1 , **AF** g_1 , **A** $(g_1 \cup g_2)$, **A** $(g_1 \cap g_2)$
- **EX** g_1 , **EG** g_1 , **EF** g_1 , **E** $(g_1 \cup g_2)$, **E** $(g_1 \cap g_2)$

where g_1 and g_2 are state formulas

23.04.2021 Institute for Applied Information Processing and Communications

