Computer Organization and Networks

(INB.06000UF, INB.07001UF)

Welcome

Winter 2020/2021

Stefan Mangard, www.iaik.tugraz.at

COVID-19 Prolog

Lecture and Practical will be All Digital Events

Lecture

- Links for Microsoft Teams will be sent by email before each class
 - → Let's have an interactive lecture
 - → The lecture should not be one-way streaming
- Youtube streaming is available as backup

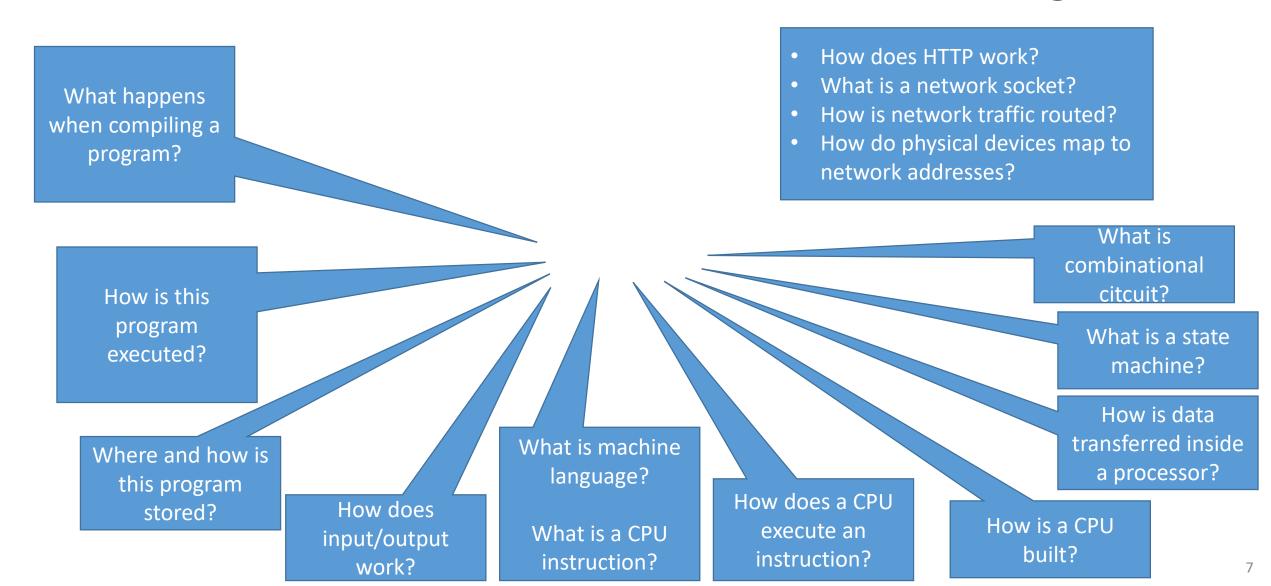
Practical

- Video tutorials
- Discussions and tutorials via discord

Let's Try Interaction

Content

What this course is about

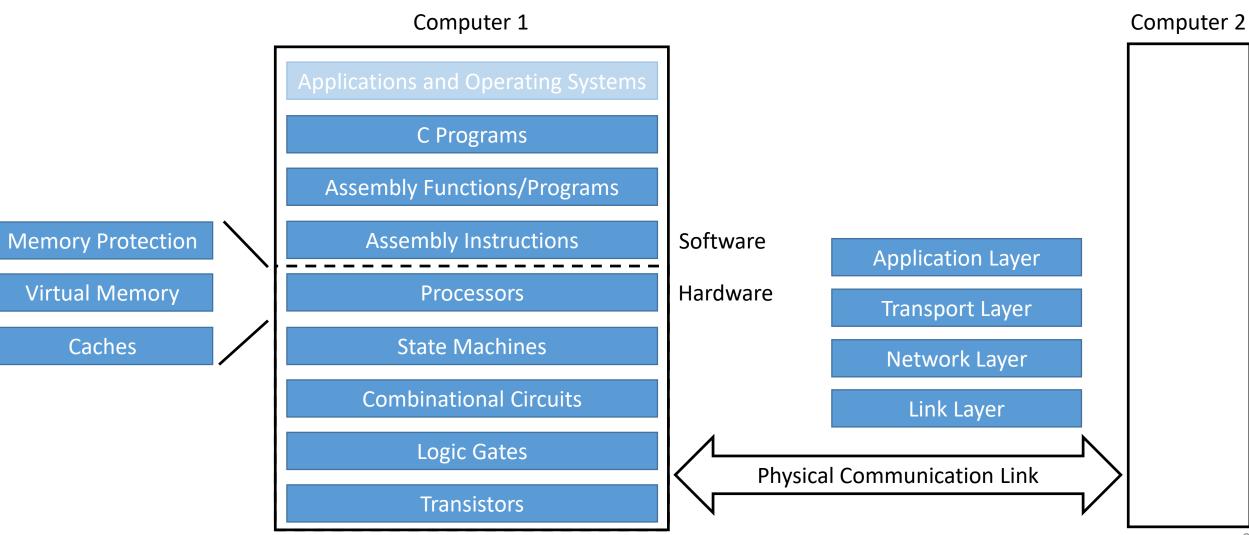

How does a computer work?

How do computers communicate?

• What does actually happen, if I compile and run this code?

```
include <stdio.h>
int main()
{
         printf("Hello World");
         return 0;
}
```

Hardware and Software - It's all one Thing


The Lecture follows a Bottom-up Approach

Abstraction will be our most important tool

 We "play Lego" and we constantly build larger and more powerful bricks

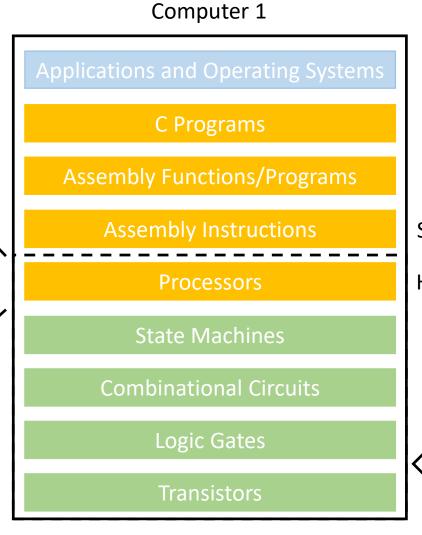
The Big Picture

The Big Picture

Block 2 - Processors

Block 3 - Networks

Block 1 - Basics


Block 4 – Memory System

Computer 2

Memory Protection

Virtual Memory

Caches

Software

Hardware

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Communication Link

Goal

Get to know the machine you program
 only this allows to write highly optimized code

- Understand the specifications of your device
 - Which device does this spec belong to?
 - 64-bit six-core CPU implementing ARMv8.4-A ISA
 - Two high performance cores @2.65 GHz (Lightning), four energy efficient cores (Thunder)
 - 6 ALUs and three FP/vector pipelines
 - Lightning: 128 KiB L1I and 128 KiB L1D; Shared L2 with 8 MiB
 - TSMC 7nm, 8.5 billion transistors

ACM Turing Awards

The Turing Award is the most prestigious award in computer science –
 it is the Noble Price of Computer Science

 David A. Patterson and John L. Hennessy received the Turing Award 2017 for their work on computer architectures and organization

Watch their Turing Lecture:

https://www.acm.org/hennessy-patterson-turing-lecture

Computer Organization and Networks

Networks

 In this course, we learn the basics to get the big picture → dig deeper in follow-up courses!

Software

Hardware

Application Layer Transport Layer Network Layer Link Layer **C Programs** Assembly Functions/Programs **Assembly Instructions Processors State Machines Combinational Circuits Logic Gates Transistors**

Networks

software

 In this course, we learn the basics to get the big picture → dig deeper in follow-up courses!

- System-Level Programming
- Operating System

"Build your own OS"

Hardware

Application Layer Transport Layer Network Layer Link Layer **C Programs** Assembly Functions/Programs **Assembly Instructions Processors State Machines Combinational Circuits Logic Gates Transistors**

Networks

 In this course, we learn the basics to get the big picture → dig deeper in follow-up courses!

Software

Hardware

Digital System Design

"Build your own hardware"

https://opentitan.org/

Application Layer

Transport Layer

Network Layer

Link Layer

Applications and Operating Systems

C Programs

Assembly Functions/Programs

Assembly Instructions

Processors

State Machines

Combinational Circuits

Logic Gates

Networks

• In this course, we learn the basics to get the big picture → dig deeper in follow-up courses!

System Integration and Programming

"Build your own hardware and integrate it in Linux"

Hardware

Application Layer

Transport Layer

Network Layer

Link Layer

Applications and Operating Systems

C Programs

Assembly Functions/Programs

Assembly Instructions

Processors

State Machines

Combinational Circuits

Logic Gates

Networks

• In this course, we learn the basics to get the big picture → dig deeper in follow-ur courses!

Software

Introduction to Information Security

"Learn about Security on all Layers"

Hardware

Application Layer

Transport Layer

Network Layer

Link Layer

Applications and Operating Systems

C Programs

Assembly Functions/Programs

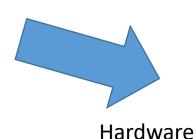
Assembly Instructions

Processors

State Machines

Combinational Circuits

Logic Gates


Networks

Software

 In this course, we learn the basics to get the big picture → dig deeper in follow-up courses!

Side Channel Security

"Learn about the fatal consequences of side channels"

https://meltdownattack.com/

Transport Layer

Network Layer

Link Layer

Applications and Operating Systems

C Programs

Assembly Functions/Programs

Assembly Instructions

Processors

State Machines

Combinational Circuits

Logic Gates

Administrative Stuff

Position in Curricula

- Compulsory course in semester 3 for
 - 211 Information and Computer Engineering (curriculum 2019)
 - 521 Computer Science (curriculum 2019)
 - 524 Software Engineering and Management (curriculum 2019)
- Elective compulsory course in semester 3 for
 - 054, 414 Supplementary Bachelor's program Teacher Training: Secondary Schools (General Education), Subject: Informatics (curriculum 2019)
 - 198 Teacher Education Programme for Secondary Level (curriculum 2019)

Team

Stefan Mangard

Johannes Feichtner

Lukas Prokop

Robert Schilling

Teaching Assistants

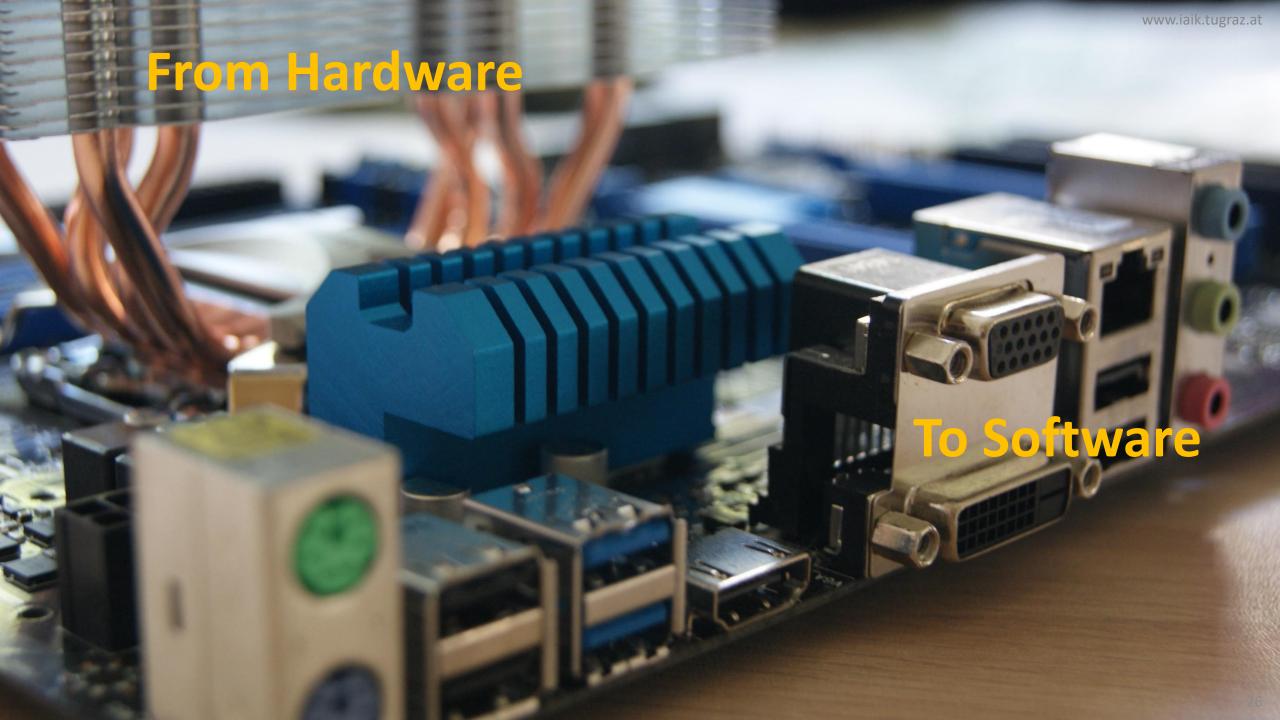
- Ferdinand Bachmann
- Cagdas Baris Demirtas
- Nikolaus Grogger
- Richard Heinz
- Amir Mujacic
- Michael Neubauer
- Lukas Pertoll
- Crt Stajnko
- Martin Unterguggenberger
- Moritz Waser

Material and Contact

Email

con@iaik.tugraz.at

Course website including all material


http://www.iaik.tugraz.at/con

Discord invitation link

https://discord.com/invite/mxuUnjP

 Newsgroup tu-graz.lv.con

Lecture

Lecture

- Location
 - Online in MS Teams (Backup via Youtube)
- Time

Each week on Wednesday there is a block of 120min lecture plus a 10 min break

- 13:00 14:00 lecture block 1
- 14:00 14:10 break
- 14:10 15:10 lecture block 2

The positioning of the break may vary ;-)

 Programming examples are available from https://extgit.iaik.tugraz.at/con/examples-2020.git

Lecture Content and Timeline

Block 1: Basics (Stefan Mangard)

- Chapter 1: Combinational Circuits
- Chapter 2: Number representation and arithmetic
- Chapter 3: Finite State Machines

Block 1 - Basics

Block 2: Processors (Stefan Mangard)

- Chapter 4: Basics of Processor Design
- · Chapter 5: Pipelining
- Chapter 6: Pipelining Issues
- Chapter 7: Hardware/Software Contract, Stack

Block 2 - Processors

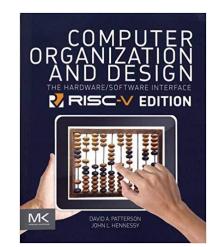
Block 3: Networks (Johannes Feichtner)

- Chapter 8: Network Basics
- Chapter 9: Network Layer
- Chapter 10: Transport Layer
- Chapter 11: Application Layer

Block 3 - Networks

Block 4: Memory System (Stefan Mangard)

- Chapter 12: Caches
- Chapter 13: Virtual Memory
- Chapter 14: Security


Block 4 – Memory System

Material

- Slides
 - Central source

- This course is based on the RISC-V instruction set
 - Many tutorials and materials can be found on the web
 - https://riscv.org/

- Textbook:
 - Computer Organization & Design: The Hardware/Software Interface (David A. Patterson / John L. Hennessy)
 - We partly cover the content of this book

Practical

Tasks

Deadline	Topic	Toolchain	Points
23.10.2020	AddSub Machine	Logisim	15
06.11.2020	PicoRISC-V CPU	SystemVerilog	20
20.11.2020	Multiplier incl. CPU Integration	SystemVerilog	20
04.12.2020	XGCD	RISC-V Assembly	15
18.12.2020	Ping me	C/C++	15
22.01.2021	Talk UDP to me	C/C++	15

88–100	Sehr gut (1)
76–87	Gut (2)
63–75	Befriedigend (3)
51–62	Genügend (4)
0–50	Nicht genügend (5)

Mode of Operation

There is a PDF assignment for each task

 There is a video tutorial for each assignment (+ extra video tutorial for SystemVerilog)

All tutorials take place online via Discord organized as Q & A sessions

• There is approximately two weeks for each assignment

Assignment

PDF Assignment for Task 1 is online

 Video tutorials for the next task will be published no later than with the deadline of the task before

Publication Date	Tutorial Video Content
09.10.2020	Git and Logisim
23.10.2020	SystemVerilog: toolflow, example implementations
06.11.2020	SystemVerilog: finite state machines
20.11.2020	RISC-V assembly and calling conventions
04.12.2020	C and network basics
18.12.2020	Network protocols

Question hours

- 10 groups, 10 teaching assistants (TAs)
- Question hours start next week (13.10.2020)
- Weekly question hours specific for each group

	Tuesday	Wednesday	Thursday
08:00	Richard, Michael	Nikolaus	Amir
09:00	Cagdas, Martin		
10:00			
11:00		Črt	
12:00		Lukas	
13:00			Ferdinand
14:00			Moritz

Submissions

Submission via GitLab

 GitLab repositories will be distributed via Email by the end of this week

Have you worked with git before?

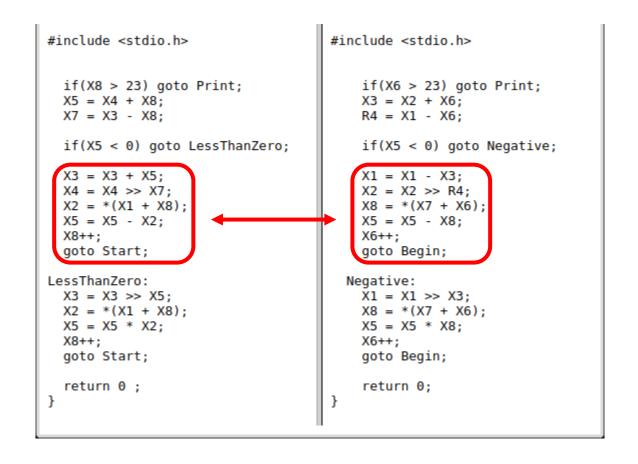
Interviews

- Interviews will happen on Discord (microphone needed!)
- TA will pick you up from #con-waiting-room

Week	Interview scope
23-27.11.2020	Task 1–3
25-29.01.2021	Task 4–6

Resources

- Course Web:
 - https://www.iaik.tugraz.at/con
- Virtual machine with all tools installed
 - https://seafile.iaik.tugraz.at/f/1c53add7a9bb4af3afe3/
- Upstream Repository and Assignment:
 - https://extgit.iaik.tugraz.at/con/practicals-2020
- Newsgroup:
 - tu-graz.lv.con
- Tutorials:
 - Regularly, almost every week


Plagiarism

- We perform plagiarism checks!
- All involved people receive the grade "U (Ungültig / Täuschung)"
 - We will not invest time on researching who copied from whom
- If you plagiarize parts of the program, it is still a case of plagiarism
- How to avoid plagiarism?
 - Do not share code!
 - Do not tell/dictate others your solution!
 - Commit regularly to your git repository!
 - The practical is no group work!

Plagiarism example: Identical program

```
#include <stdio.h>
#include <stdio.h>
  if(X8 > 23) goto Print;
                                       if(X8 > 23) goto Print;
  X5 = X4 + X8;
                                       X5 = X4 + X8;
  X7 = X3 - X8;
                                       X7 = X3 - X8;
  if(X5 < 0) goto LessThanZero;
                                       if(X5 < 0) goto LessThanZero;
  X3 = X3 + X5;
                                       X3 = X3 + X5;
  X4 = X4 >> X7;
                                       X4 = X4 >> X7;
  X2 = *(X1 + X8);
                                       X2 = *(X1 + X8);
                                       X5 = X5 - X2;
  X5 = X5 - X2;
  X8++;
                                       X8++;
  goto Start;
                                       goto Start;
LessThanZero:
                                     LessThanZero:
 X3 = X3 >> X5;
                                       X3 = X3 >> X5;
 X2 = *(X1 + X8);
                                       X2 = *(X1 + X8);
  X5 = X5 * X2;
                                       X5 = X5 * X2;
  X8++;
                                       X8++;
  goto Start;
                                       goto Start;
  return 0 ;
                                       return 0 ;
```

Plagiarism example: Variables renamed

This is still the same program!

Plagiarism example: Branches flipped

```
#include <stdio.h>
  if(X8 > 23) goto Print;
  X5 = X4 + X8;
 X7 = X3 - X8;
  if(X5 < 0) goto LessThanZero;
  X3 = X3 + X5;
  X4 = X4 >> X7;
  X2 = *(X1 + X8);
  X5 = X5 - X2;
  X8++;
  goto Start;
LessThanZero:
  X3 = X3 >> X5;
  X2 = *(X1 + X8);
  X5 = X5 * X2;
  X8++;
  goto Start;
  return 0 ;
```

```
#include <stdio.h>
  if(X6 > 23) goto Print;
  X3 = X2 + X6;
  R4 = X1 - X6;
  if(X5 >= 0) goto Positive;
  X1 = X1 >> X3;
  X8 = *(X7 + X6);
  X5 = X5 * X8;
  X6++;
  goto Begin;
Positive:
  X1 = X1 + X3;
  X2 = X2 >> R4;
  X8 = *(X7 + X6);
  X5 = X5 - X8;
  X6++;
  goto Begin;
    return 0;
```

This is still the same program!

Do not invest time on trying to bypass detection of plagiarism

Invest your time on the assignments

Your First Actions for the Practical

- Register for one of the groups in TUGRAZonline (deadline: this week)
- Read the assignment sheet
- Install the development environment and get going
- Clone the upstream repository
- Watch the video tutorial for assignment 1
- Attend the online tutorials next week

Effort

• This is a 7 ECTS course – this is approx. one quarter of your semester (approx. 200 working hours)

There are 120 minutes lecture per week

 This lecture and the practical runs through many abstraction layers with many different tools – work on the course every week ("Am Ball bleiben")