
IAIK

IAIK

Network & Transport Layer
Computer Organization and Networks 2019

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at

IAIK

● IPv6

 Header Structure

 Addressing

● ICMPv6 Functionality

 NDP

● TCP & UDP

 Error Handling?

 Flow & Congestion Control

Outline

Application

Transport

Link layer
(Ethernet, WLAN, LTE…)

TCP / IP Model

IPv4

ICMP v4/v6

IPv6

Network

TCP UDP

What happened?
● Global registries have no more

IPv4 addresses to assign

● Until then: 200 mio. new
addresses were assigned / year

IPv4 Depletion

Source: http://goo.gl/AglMMw

Source: http://goo.gl/13Rswl

http://goo.gl/AglMMw
http://goo.gl/13Rswl

IAIK

Problem
● Rise of always-on connections

 Broadband instead of dial-up

 Mobile devices

● Inefficient address use

 Often far more addresses allocated
than needed, e.g. /8 block

 Not all addresses usable in subnets

● NAT makes PCs unaddressable from outside

 Solution: IPv6

IPv4 Depletion

Source: http://goo.gl/13Rswl

http://goo.gl/13Rswl

IAIK

In the 90s…
● Only three classes of IP addresses

 Class A (/8): 128 networks for 16.277.216 connected hosts each

 Class B (/16): 16.384 networks for 65.536 computers

 Class C (/24): 2.097.152 networks for 256 hosts each

● Classes replaced by CIDR in order to reduce amount of wasted addresses

 Need for larger address space!

● IPv4: 32-bit  max. 232 addresses

● IPv6: 128-bit  max. 2128 addresses

IPv6 Design Goals

IAIK

Aside from more addresses…
● Emphasis on end-to-end principle  global reachability without NAT

● Simplify the processing of IPv6 packet headers for routers

 Less computational effort needed for forwarding

● Self-configuration of nodes in networks

 „Stateless address autoconfiguration“ (SLAAC)

 Instead of stateful DHCP, use ICMPv6 and „Neighbor Discovery Protocol“ (NDP)

● Native support for network techniques Quality of Service, Multicasting, IPSec

IPv6 Design Goals

IAIK

● IPv6 replaces IPv4

 Still connection-less packet switching (datagrams)

 128-bit addresses vs. 32-bit addresses

● IPv6 handled as separate protocol family

 Adaptions mostly on network layer but also others

 ICMPv6 replaces ICMPv4, IGMP and ARP (!!)

 DHCP  DHCPv6, e.g. for DNS server discovery

 DNS adapted by AAAA record

● No more NAT needed

 Good for Peer-to-peer application development

IPv6 Properties

Privacy problem!

IAIK

IPv6 Adoption Rate

Source: https://goo.gl/oQpuOm

https://goo.gl/oQpuOm

IPv6 Header

IAIK

● Version (4 bits): IP protocol number  6

● Traffic Class (8 bits): Like DSCP field in IPv4 used for traffic prioritization,
e.g. low latency for streaming media

IPv6 Header

IAIK

● Flow Label (20 bits): Identifies packet using labels, e.g. VoIP conversation
Hint for routers to use same outgoing path for these packets to avoid re-
ordering at receiver side  can be useful for real-time applications

● Payload Length (16 bits): Only size of sent data because IPv6 header size is fixed
(40 bytes). In IPv4  total header length

IPv6 Header

IAIK

● Next Header (8 bits): Next header following the IPv6 header
Like protocol identifier in IPv4 header, e.g. TCP (6), UDP (17), ICMPv6 (58)
or code of new IPv6 extension header

● Hop Limit (8 bits): Like TTL field in IPv4
Decremented by one at each visited node. If 0  packet discarded

IPv6 Header

IAIK

IPv6 Extension Header

● Placed between IPv6 Header
and higher layer protocol

● Last Next Header in chain must
be upper layer protocol

● Most IPv6 packets without
extension headers

Extension Header Description

Routing Source specifies route

Fragment Parameters for fragmentation (if still needed)

Authentication (AH) Integrity of IPv6 packets (IPSec)

Encapsulation (ESP) Encryption / decryption of IPv6 packets (IPSec)

Destination options Examined only by destination device

Hop-by-hop options
Examined by all devices on path, e.g.

Jumbograms = IPv6 packets > 65.535 bytes

Next Header

IPv6 Header

TCP / UDP Header & Data

Next Header

Basic Header

IPv6 packet Arbitrary number of
next headers

Carry optional Internet Layer
information

IAIK

Missing fields
● Fragmentation

 Fields: Identification, Flags, Fragment Offset

 Moving intelligence to clients  Routers never fragment IPv6 packets

● Header Length, Options

 40 bytes fixed header size instead of variable length

 Some IPv4 Options moved to extension headers

● Header checksum

 Processing overhead reduced  TCP, UDP should do this

 IPv4 routers needed to re-calculate checksum after decreasing the TTL value

Difference to IPv4 Header?

IAIK

Renamed fields
● IPv4 Protocol  IPv6 Next header

● IPv4 Total Length  IPv6 Payload Length

 Remember: IPv6 header size always 40 bytes

● IPv4 TTL  IPv6 Hop Limit

 Count number of hops instead of seconds

New fields
● Traffic Class

 Packet Prioritization / Quality of Service (QoS), e.g. for VoIP or A/V streaming

● Flow Label

 Distinguish flow of packets that need same treatment / routes

Difference to IPv4 Header?

IAIK

Wireshark Example

IPv6 Header

IAIK

Important: In IPv6, routers never fragment packets!

● MTU Path discovery mandatory for IPv6 clients

● Alternative for IPv6: Use Minimum MTU size 1280 bytes

 Any link must be able to transfer this size without end-to-end fragmentation

 Also practical, e.g. for small systems  can omit MTU Path Discovery

MTU Path Discovery in IPv6
● As in IPv4, packets with size > MTU are dropped by router
 ICMP error message: „Packet too big“

● Actual fragmentation task of upper-layer protocol (TCP, UDP)

IPv6 Fragmentation

IPv6 Addressing

IAIK

Same principle as for IPv4 but…
● Addresses no longer identify hosts but interfaces

 IPv4: „Network address“  IPv6: „Prefix“

 IPv4: „Host address“  IPv6: „Interface address“

● No broadcast addresses anymore  now performed via Multicast

● One interface can be assigned multiple addresses (of different scope types)

IPv6 Addresses

ip -6 addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536

inet6 ::1/128 scope host

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000

inet6 2001:11d0:8:650b::3/64 scope global

inet6 fe80::250:56ff:fe05:866c/64 scope link

IAIK

● 128-bit addresses  max. 2128 addresses

● Hexa-decimal notation: x:x:x:x:x:x:x:x  Eight 16-bit pieces, separated by :
Example:

Rules
● A set of consecutive null blocks can be replaced by two colons

 Only once per address in order to prevent ambiguous representations

● Leading zeros within each 16-bit part can be removed, e.g.

● Addressing via IP & port:

IPv6 Notation

201a:0000:0000:0945:daa2:5eff:fe8e:e553

201a::0945:daa2:5eff:fe8e:e553

201a::945:daa2:5eff:fe8e:e553

https://[201a::945:daa2:5eff:fe8e:e553]:443

IAIK

IPv6 Subnets
● Denoted in CIDR representation, e.g.

includes to

Address Allocation

● 64 bits reserved for interface ID  possibility for 264 hosts in one LAN

 Typically ISPs give /64 blocks to customers!

2001:0db8:1234::/48

2001:0db8:1234:0:0:0:0:0 2001:0db8:1234:ffff:ffff:ffff:ffff:ffff

/32 /48/16 /64

2a00:1450:4001:816:1319:8a2e:0370:2003

Prefix: 2a00:1450:4001:816::/64 with 2(128-64) = 264 addresses

Interface Identifier: 1319:8a2e:0370:2003

IAIK

● Unicast (one-to-one)

 Address of single interface  Packet delivery for one receiver

 Comparable with classic IPv4 address

● Multicast (one-to-many)

 Address for a set of interfaces (typically owned by different hosts)
 Packet for multicast address delivered to all interfaces with that address

● Anycast (one-to-nearest)
 Same as multicast but
 Packet for anycast address delivered to one interface with that address

 The „closest“ one according to the routing protocol‘s distance metric

IPv6 Address Types
No more broadcast address!

IAIK

In which part of a network (scope) is an address valid?

● Unicast / Anycast

 Link local: Loopback, only valid on current link (network)  not routable

 Unique local: Only for communication in small subnets  private addresses

 Global: Globally valid, routed via Internet

● Multicast

 Prefix ff00:: identifies scope

IPv6 Address Scopes
Global Unique Local Link Local

ip -6 addr

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP>

mtu 1500 qlen 1000

inet6 2001:11d0:8:650b::3/64 scope global

inet6 fe80::250:56ff:fe05:866c/64 scope link

IAIK

Link local addresses
● ::1/128: Loopback address, same as 127.0.0.1 on IPv4

● fe80::/10: Only valid and unique on single link

 Can be used for communication between two IPv6 devices (like ARP but on layer 3)

 Existence mandatory on every IPv6-enabled device!

Unique local addresses

● Comparable to private address 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16 in IPv4

● For local communications or inter-site VPNs. Not routable in Internet!

Unicast Addresses

ip -6 addr | grep fe80

inet6 fe80::250:56ff:fe05:866c/64 scope link

fc00::7 Global ID Subnet ID

7 bits 40 bits 16 bits

Interface ID = 128 bits address

IAIK

Global addresses
● Addresses for generic use of IPv6

 Like IPv4 addresses globally unique, public, and routable

● 2000::/3 (2000… to 3fff)  Only 1/8 of total address space for now

 RIRs typically get blocks from /12 to /23

 ISP mostly get /32

● Enables efficient route aggregation, e.g.

 Customer 1 gets 2001:db8:1:/48

 Customer 2 gets 2001:db8:2:/48

 ISP only routes the /32 prefix
2001:b8::/32

Unicast Addresses

See: https://goo.gl/LwXQDy

Somewhat overkill for LANs with 10 machines!
 RFC 6177 suggests variably-sized subnets
between /48 and /64, depending on needs…

https://goo.gl/LwXQDy

IAIK

Sending out broadcasts…
● IPv6 has no broadcast addresses as in IPv4, e.g. 192.168.1.255
● Use Multicast instead, prefix: ff00

Schema

Examples
● ff02::1 = Send broadcast to all nodes in LAN segment

● ff02::2 = All routers in LAN segment

Multicast Addresses

ff Lifetime Scope

8 bits 4 bits 4 bits

Group ID

112 bits

0

1

Permanent address
Temporary address

1

2

5

8

e

Interface (Loopback)
Link
Site
Organization
Global

See: https://goo.gl/RXkKDP

https://goo.gl/RXkKDP

IPv6 Functionality

IAIK

= Replaces ICMPv4, IGMP, ARP (!)

● As in IPv4, used to send error and information (e.g. „ping“) messages

● ICMPv4 was often blocked by firewalls  ICMPv6 must be allowed!

 No fragmentation in IPv6  MTU Path discovery necessary

ICMPv6 RFC 4443

For ICMPv6:
Next Header = 58

IAIK

Mostly used…

For more codes, see http://goo.gl/ONIm9d

ICMPv6 Codes

Type Code Description

1 – Destination Unreachable
3 Address unreachable

4 Port unreachable

2 – Packet too big 0  Points to actual MTU to be used

3 – Time Exceeded 0 Hop limit exceeded in transit

128 – Echo Request 0 Client requests IPv6 addresses (ping)

129 – Echo Reply 0 Answer (ping)

133 – Router Solicitation 0 Request for router advertisements

134 – Router Advertisement 0 Router sends Internet parameters

135 – Neighbor Solicitation 0 Get MAC address of neighbor node

136 – Neighbor Advertisement 0 Node sends his (new) MAC address

137 - Redirect 0 Inform hosts of better first hop

Error
messages

Information
messages

http://goo.gl/ONIm9d

ICMPv6 Ping
ping google.at

Reply by 2a00:1450:4001:812::2003: time=21ms

Echo Request

Echo Reply

IAIK

= NDP

● Operates on link layer but part of ICMPv6

 5 ICMPv6 packet types for information exchange

133 – Router Solicitation, 134 – Router Advertisement

135 – Neighbor Solicitation

136 – Neighbor Advertisement

137 – Redirect

Purpose
● Replaces functionality of ARP

● Hosts use it to discover routers, check neighbors

● Auto-configuration of addresses

Neighbor Discovery Protocol RFC 4861

IAIK

Discovery
● Router: Available routers in network?

● Prefix: Set of prefixes for current link?

● Parameter: Which MTU or hop limit to put on outgoing packets?

Addresses
● Resolution: Replacement for ARP

● Auto-configuration (SLAAC): Assign IPv6 address to interface without DHCP

● Detection of duplicates (DAD) and neighbor unreachability (NUD)

Routing
● Next-hop determination: Link-layer address for next hop (default gateway)

● Redirection: Routers tell hosts there is a better first-hop available

NDP Tasks RFC 4861

IAIK

In IPv4
Client has static routes or learned via DHCP

In IPv6
● Host joins network

● Sends out: „Router Solicitation“ via Multicast to group „all routers“

 ICMPv6 message type 133

● Router advertises / sends periodically to Multicast group „all nodes“

 ICMPv6 message type 134

 One or more prefixes, lifetime of prefixes, router information

Security issue: Everybody can send out RA and pretend to be a router

NDP – Router Discovery

MITM attack!

IAIK

Wireshark Example

NDP – Router Discovery

IAIK

Wireshark Example

NDP – Router Discovery

IAIK

Replaces functionality of ARP in IPv4

 Instead of ARP table  „Neighborhood cache“

How to get the MAC address from IPv6 address?
1. Send out: „Neighbor solicitation“ to solicited-node multicast address

 Request not broadcasted to all nodes (as with ARP in IPv4)!

 ICMPv6 message type 135

2. If node is present: „Neighbor advertisement“

 ICMPv6 message type 136

 Neighborhood Cache is updated with mapping IP  MAC address

NDP – Address Resolution

See: https://goo.gl/WnkCgk

https://goo.gl/WnkCgk

IAIK

Neighborhood Cache

Windows:

NDP – Address Resolution

ip -6 neigh

2001:41d1:8:650b::14 dev eth0 lladdr 00:50:56:08:b9:ba REACHABLE

fe80::250:56ff:fe00:aefc dev eth0 lladdr 00:50:56:00:ae:fc STALE

2001:41d1:8:65ff:ff:ff:ff:ff dev eth0 lladdr 00:05:73:a0:00:00 router REACHABLE

netsh interface ipv6 show neighbors

2001:41d1:8:65ff:ff:ff:ff:ff 00-00-00-00-00-00 Not reachable

fe80::82c6:abff:fe73:f564 80-c6-ab-..-..-.. Reachable (Router)

ff02::1 33-33-00-00-00-01 Permanent

ff02::2 33-33-00-00-00-02 Permanent

ff02::c 33-33-00-00-00-0c Permanent

…

IAIK

Stateless address auto-configuration (SLAAC)

● Interface can obtain IPv6 address without router / server (stateless)

● Enables plug-and-play operation of host

Workflow
1. Multicast-capable interface comes up

2. Derive IPv6 link-local address from link layer address (MAC)

3. Check for potentially duplicate addresses (prevent collision)

4. Perform router / prefix discovery in order to get address with
global or unique-local scope

NDP – Auto-configuration

IAIK

How to derive a link-local address from the MAC address?

NDP – Auto-configuration

00MAC address
(48 bits)

90 FC 0F

00 90 27

27

FC17

17

0F

FF FE

64 bits version
(EUI-64 Format)

00 90 27 FC17 0F

0 0 0 0 0 0 1 0 Flip 7th bit

FF FE

fe80:0000:0000:0000:0290:27ff:fe17:fc0f = Link-local address
Link-local Prefix (64 bits) Interface ID (64 bits)

See: https://goo.gl/BwAih8

EUI = Extended
Unique Identifier

https://goo.gl/BwAih8

IAIK

Is this address already in use?
= Duplicate Address Detection (DAD)

1. Send „Neighbor Solicitation“ to local network

2. „Neighbor Advertisement“ is sent (only) if other host uses this address

 In practice, collision very unlikely due to large address space

Get global IPv6 address
● Wait for router advertisement with prefix or

● Send „Router Solicitation“ to multicast address ff02::2 (all routers)

● Reply: „Router Advertisement“
with global prefixes

NDP – Auto-configuration

2a00:1450:dead:beef:0290:27ff:fe17:fc0f

Global Prefix (64 bits) Interface ID (64 bits)

Privacy?
● Unique addresses

 With IPv6, every interface gets a unique IPv6 address

 By design, your interface MAC address is globally unique

● No dynamic IP addresses / NAT needed  huge address space

If notebook location changes  new prefix but still same interface ID!

Remedy:
„Privacy Extensions for SLAAC“ (RFC 4941)
 Temporary IPv6 addresses

NDP – Auto-configuration

64 bits Prefix 64 bits EUI-64 Address

Client 1

64 bits Prefix 64 bits EUI-64 Address

Client 1

ISP 1 ISP 2

64 bits Prefix

Internet

Tracking!

64 bits Prefix

Transport Layer

IAIK

Purpose
● Data channels for individual applications

 Transport end-to-end messages between particular services

 Use multiplexing to differentiate multiple, separate applications

● Reliability

 „Best-effort“ delivery is not good enough

 Re-order incoming packets according to their sending order

 Detect errors  request faulty packets again

● Flow Control & Congestion Avoidance

 Sender must not overwhelm receiver with packets

 Handle too much traffic in the network

Transport Layer

IAIK

Protocols
● TCP: Transmission Control Protocol

 Connection-oriented

 Reliable but „heavyweight“ end-to-end transport of data

 Error detection, Flow & congestion control, Ordered Delivery

 Applications: HTTP(S), FTP, SSH, SMTP, IMAP, POP3, …

● UDP: User Datagram Protocol

 Connection-less

 Unreliable  sender does not know if destination reached

 No congestion control

 Applications: DNS, DHCP, SNMP, often also in VPNs

Transport Layer

IAIK

In UDP and TCP…
● Service is provided to higher layers through ports

 Same port number for different TCP and UDP service is possible

● Used for multiplexing

 Ports allow to speak to different applications running on same host

 Addressing via IP address and port number, e.g.

● Session: Communication between client and server on a socket pair

 TCP: Established after fulfilling a handshake

 UDP: Identified on higher level, e.g. using session cookies

Transport Layer – Ports

192.168.1.1:80 or [201a::945:daa2:5eff:fe8e:e553]:443

IAIK

16-bit numbers between 0 - 65535

Three categories
● Well-known ports: 0 – 1023

 Reserved by convention for specific, widely-used services

 On Linux: Can be opened only by superuser (root)

● Registered ports: 1024 – 49151

 Proprietary applications

● Dynamic ports: 49152 – 65535

 Ephemeral or short-lived ports

 Dynamically opened / closed by applications during sessions

Transport Layer – Ports

IAIK

Mostly used…

For more ports, see http://goo.gl/Ds3BTj

Transport Layer – Ports

Port Number Service

20 File Transfer Protocol (FTP) – Data

21 FTP - Control channel

22 Secure Shell (SSH)

23 telnet

25 Simple Mail Transfer Protocol (SMTP)

53 Domain Name System (DNS)

80 Hypertext Transfer Protocol (HTTP)

443 HTTP Secure (HTTPS)

1194 OpenVPN

3306 MySQL Database System

5060 VoIP Signalling (SIP)

Well-known
Ports

Registered
Ports

http://goo.gl/Ds3BTj

IAIK

Example Scenario
Client (129.27.142.14) wants to connect to HTTP Server at 129.27.142.13

Workflow
1. Client chooses source port > 49151

2. Destination port known / fixed at 80 (HTTP)

Note:
Another connection from 129.27.142.14 would use another source port!

Transport Layer – Ports

129.27.142.14:52312 -> 129.27.142.13:80

IAIK

Transport Layer – Ports

129.27.142.13:80

HTTP Server (Port 80)

TCP/IP Stack

HTTP Thread

129.27.142.14:52001

SSH Server (Port 22)

HTTP Thread

129.27.142.13:80

129.27.142.14:52007

129.27.142.13:22

SSH Thread

129.27.142.14:52202

SSH Thread

129.27.142.13:22

129.27.142.14:52205

Server

Client

Socket Pairs

Web Browser SSH Client

IAIK

Transport Layer – Ports

netstat -an

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 129.27.142.14:52001 129.27.142.13:80 ESTABLISHED

tcp 0 0 129.27.142.14:52007 129.27.142.13:80 ESTABLISHED

tcp 0 0 129.27.142.14:52202 129.27.142.13:22 ESTABLISHED

tcp 0 0 129.27.142.14:52205 129.27.142.13:22 ESTABLISHED

netstat -an

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 129.27.142.13:22 0.0.0.0:* LISTEN

tcp 0 0 129.27.142.13:80 0.0.0.0:* LISTEN

tcp 0 0 129.27.142.13:80 129.27.142.14:52001 ESTABLISHED

tcp 0 0 129.27.142.13:80 129.27.142.14:52007 ESTABLISHED

tcp 0 0 129.27.142.13:22 129.27.142.14:52202 ESTABLISHED

tcp 0 0 129.27.142.13:22 129.27.142.14:52205 ESTABLISHED

Client

Server

IAIK

Firewalls typically use rules to decide on connections:
 Allow / Drop | Source IP + Port | Destination IP + Port

Example: How to block all SSH connections on 129.27.142.13?

= Drop incoming connections to 129.27.142.13:22

● Firewalls nowadays do stateful inspection

 Understand protocols and connection state (build-up, usage, teardown)

● Often also inspect higher-level protocols

 E.g. helps to detect brute-force attempts

Transport Layer – Firewalls

iptables –I INPUT –d 129.27.142.13 –-dport 22 –j DROP

UDP

IAIK

= User Datagram Protocol

Attributes
● Stateless: Great for large number of clients (streaming)

● Transaction-oriented (= „connection-less“)

● Unreliable

 Packets could be dropped, corrupted, out-of-order, …
but UDP does not detect that!

Usage where…
● Re-transmission of lost packets makes no sense, e.g. VoIP, Streaming, …

● Small implementations are needed (SNMP, TFTP, DHCP)

● Simple request / response is enough (DNS, NTP)

UDP RFC 768

IAIK

● Length (16 bits): Total UDP Packet length

 Header + Payload

 Payload in IPv4 limited to 65.507 bytes (65.535 - 8 (UDP header) - 20 (IPv4 header) bytes)

● Checksum (16 bits): Checksum over header and data

 Optional in IPv4, mandatory in IPv6

● Payload: Data to be sent, e.g. DNS request

UDP Header
Bit +0..7 +8..15 +16..23 +24..31
0 Source Port Destination Port

32 Length Checksum

… Payload

IAIK

● Source Port (16 bits): 0 – 65535

 Identifies application of sender (client)

● Destination Port (16 bits): 0 - 65535

 Identifies application of receiver (server)

UDP Header
Bit +0..7 +8..15 +16..23 +24..31
0 Source Port Destination Port

32 Length Checksum

… Payload

TCP

IAIK

= Transmission Control Protocol

Attributes
● Connection-oriented

 Data delivery only possible after „Three way handshake“

● Stateful

 Check if destination is alive  Connection establishment

 Have packets been lost?  Acknowledgement

 Did packets arrive in correct-order?  Sequence

 Can receiver follow speed of sender?  Flow Control (Buffers!)

● Application data is regarded as byte stream

 TCP ensure reliable transmission of byte segments

TCP RFC 793

IAIK

TCP Transmission
Web Browser

Write bytes to
TCP stream

Send Buffer

TCP

IP Packet IP Packet IP Packet

Transport Layer

Segment Segment Segment

Network Layer

Web Server

Reading bytes
in original order

Receive Buffer

TCP

ServerClient

IAIK

● Source & Destination Port (16 bits each): As in UDP
Note: An interface can listen on a TCP and UDP port simultaneously!

● Sequence & Acknowledgement Number (32 bits each):
Take over various roles in concept of TCP – sessions, error handling, order, …

TCP Header

IAIK

● Data Offset (4 bits): = Header Length
 Necessary because of variably-sized options

● Reserved (3 bits): Always 0

TCP Header

IAIK

● Flags (9 bits): = Control bits
 Needed for connection establishment, tear-down, error-handling, etc.

● Window Size (16 bits): Flow Control Mechanism
 Indicates how many bytes the sender is allowed to send

without overloading the receiver

TCP Header

IAIK

TCP Header Flags

Flags Description

NS, ECE Explicit Congestion Notification

SYN
Indicates connection request

Sequence number synchronization

ACK Used to acknowledge the receipt of data

Always set, except in very first segment

FIN Indicates no more data from sender

Current segment is the last

RST Immediately kill the connection

PSH TCP should push the segment immediately to the application (no buffering)

URG Used to mark urgend data with urgent pointer

IAIK

● Checksum (16 bits): As in UDP
 Includes header and data

 Usage mandatory with TCP – and very important for IPv6 (no checksum in header)

● Urgent pointer (16 bits): Indicates „urgent“ data

TCP Header

IAIK

Wireshark Example

TCP Header

IAIK

TCP is connection-oriented which enables a reliable transmission

3 Phases
1. Connection Establishment – „Build-up“

 Performed before data can be sent

2. Data Transmission

3. Connection Termination – „Tear-down“

 Indicates to both sides that no more data is going to be sent

In between these phases, TCP undergoes a series of state changes, e.g.

CLOSED, SYN_SENT, SYN_RECEIVED, ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE_WAIT,
CLOSING, LAST_ACK, TIME_WAIT, CLOSED

TCP States

IAIK

Sequence Numbers (SEQ)
● If SYN flag set: Initial sequence number, should be random-generated

● Without SYN flag: Position number for first data byte of this segment

Acknowledgement Numbers (ACK)
● If ACK flag set: Next sequence number (SEQ) the receiver is expecting

● Acknowledges receipt of all prior bytes up to ACK number - 1

Maximum Segment Size (MSS)
Max. size of TCP payload, chosen in a way to avoid IP packet fragmentation

Maximum Segment Life (MSL)
120sec max. time a TCP segment can be in transit

TCP Terms

IAIK

TCP State
Diagram

Source: https://goo.gl/m5twaB

https://goo.gl/m5twaB

IAIK

Before a sender transmits data, a connection needs to be built-up…

Three-Way Handshake

Synchronized

SYN
SEQ_C = rand()

Client Server
CLOSED LISTEN

SYN ACK
SEQ_S = rand()

ACK_S = SEQ_C+1

ACK
SEQ_C = ACK_S

ACK_C = SEQ_S+1

SYN_RCVD

ESTABLISHED ESTABLISHED

Workflow
1. Client: Send SYN packet

Pick random sequence number

2. Server: Send SYN, ACK packet
SEQ = Pick own random number
ACK = Client SEQ + 1

3. Client: Send ACK packet
SEQ = Received ACK number
ACK = Server SEQ + 1

SYN_SENT

IAIK

Wireshark Example

1. Client  Server: SYN

2. Server  Client: SYN ACK

3. Client  Server: ACK

IAIK

Data Transfer

SEQ = 731

Client Server

ESTABLISHED ESTABLISHED

One-way example:
Client sends 70 bytes to server in two packets

1. Client: Send TCP packet
SEQ = 731
20 bytes payload

2. Server: Send ACK packet
ACK = SEQ + 20 bytes = 751
 Expecting byte 20 now

3. Client: Send TCP packet
SEQ = 751
50 bytes payload

4. Server: Send ACK packet
ACK = SEQ + 50 bytes = 801

ACK = 731

ACK = 751

SEQ_C = 751

ACK_S = 801

SEQ_C = 801

IAIK

Note: Disconnect works equally in both directions…

Connection Tear-Down

FIN
SEQ_C = x

Client Server

ESTABLISHED ESTABLISHED

FIN ACK
SEQ_S = y

ACK_S = SEQ_C+1

ACK
ACK_C = SEQ_S+1

CLOSE_WAIT

CLOSING CLOSED

Workflow
1. Client: Send FIN packet

SEQ_C = x

2. Server: Send FIN, ACK packet
SEQ_S = y
ACK_S = SEQ_C + 1

3. Client: Send ACK packet
ACK_C = y + 1

FIN_WAIT_1

TIME_WAIT
CLOSED

LAST_ACK

TCP Properties

IAIK

Losing packets?
● Transmission errors (wrong checksums)

● Lost packets, e.g. due to bad connection

How to recognize that?
● Sender‘s task to detect and re-transmit lost data

● Basically, if no ACK received for certain byte range  data has to be re-sent

● Two mechanisms
 Retransmission timeout (RTO)

 Duplicate cumulative acknowledgements (DupAcks)

Error Handling

IAIK

Assuming…
Packet to server is lost
 Server does not ACK packet

Solution
Client waits for ACK until
timeout and resends packet

Error Handling

SEQ = 10

ACK = 23SEQ = 23

SEQ = 38
ACK = 38

ACK = 43

ACK = 54

SEQ = 38

SEQ = 43

SEQ = 54

Re-sent after
timeout

Client Server

IAIK

Flow Control
● Prevent sender from overwhelming receiver with too much data

 Receiver could be busy, under heavy load or have limited buffer space

 Consequences: Packet drops, causing re-transmissions

● Sender‘s „speed“ must be adapted to receiver

● Issue between sender - receiver

Congestion Control
● Prevent sender from injecting too much data into network

 Consequences: Overload of switches / routers

● Issue between hosts - networks

Flow & Congestion Control

IAIK

Status quo
● Ordered delivery  sequence number identifies sent byte range

● Received data acknowledged by ACK no.

 How much data can be sent before ACK is required?

Flow Control

IAIK

Scenario A

Flow Control

Un-ACKed data
1000 bytes

WAIT

SEQ = 0

Un-ACKed data
1000 bytes

WAIT

Un-ACKed data
1000 bytes

WAIT

Un-ACKed data
1000 bytes

WAIT

Remote
TCP

stack

SEQ = 1000

ACK =
1000

SEQ = 2000

ACK =
2000

SEQ = 3000

ACK =
3000

ACK =
4000

Un-ACKed data
4000 bytes

WAIT

SEQ = 0

Remote
TCP

stack

SEQ = 1000

SEQ = 2000

SEQ = 3000

ACK =
4000

More efficient!

Scenario B

How can the sender determine the amount of bytes it can send before an ACK must come back? Window size!

IAIK

Idea
Adjust amount of sendable data (= advertised window) before ACK is inevitable

Principle
● Receiver advertises amount of bytes it is able to receive

● Starting size of window negotiated during handshake

Sliding Window

Advertised Window (by receiver)

45 46 47 5148 49 50 ...

First byte that can be sent Last byte that can be sent

Bytes in the send buffer

SYN

ACK

SYN ACK

SEQ=44, ACK=?, W=8

SEQ=45, ACK=73, W=8

SEQ=72, ACK=45, W=6

IAIK

Sender‘s point of view after sender got ACK=48, WIN=6 from receiver

Sliding Window

Advertised Window (by receiver)

48 49 50 5451 52 53 ...

Sent and already
acknowledged

Bytes in the send buffer

45 46 47 55 56

Sent but not yet
acknowledged

Will send as
soon as possible

Cannot send until
window moves

Usable /
effective window

IAIK

Closing the window, e.g. due to congestion…

Sliding Window

Advertised Window (by receiver)

48 49 50 5451 52 53 ...45 46 47 55 56

Bytes 48, 49, 50 sent
but not yet

acknowledged

ACK
SEQ=…, ACK=51, W=3

Advertised Window

48 49 50 5451 52 53 ...45 46 47 55 56

• Sender can now send bytes 51, 52, 53 which were already granted previously
• Receiver didn‘t open the window (right edge still 53)  Congestion

Now received from other side:

IAIK

Window closed…

Sliding Window

Bytes 51, 52, 53 sent
but not yet

acknowledged

ACK
SEQ=…, ACK=54, W=0

48 49 50 5451 52 53 ...45 46 47 55 56

Now received from other side:

Advertised Window

48 49 50 5451 52 53 ...45 46 47 55 56

IAIK

Advertised Window

Opening the window…

Sliding Window

ACK

48 49 50 5451 52 53 ...57 5855 56

Now received from other side:

SEQ=…, ACK=54, W=4

48 49 50 5451 52 53 ...57 58 5955 56

IAIK

Advertised Window

Increasing the window…

Sliding Window

ACK

Now received from other side:

SEQ=…, ACK=57, W=5

5451 52 53 ...57 58 5955 56

Bytes 54, 55, 56 sent
but not yet

acknowledged

60 61 62

Advertised Window

5451 52 53 ...57 58 5955 56 60 61 62

IAIK

Congestion
● Network is overloaded  Routers / Switches cannot handle amount of traffic

● Packets are dropped causing timeouts and re-transmissons

Why Control?
● Keep data flow rate below collapse

● Achieve high performance without re-transmissions and packet drops

Approach
Maintain a „Congestion Window“ that tells sender how much data can be sent
 Dynamic: Increased when packets are ACKed, decreased if lost (not ACKed)

Congestion Control

IAIK

Window maintained by TCP stack of sender  not part of TCP header!

Idea
● Based on a technique called additive increase / multiplicate decrease

 Start sending small amount of data (small congestion window)

 Increase amount of
data in a linear way
(additive increase)

 When packet loss
occurs, set congestion
window to half
(multiplicate decrease)

Congestion Window

Source: http://goo.gl/2X3nHR

http://goo.gl/2X3nHR

IAIK

● 11.12.2019

 Application Layer: HTTP
HTTP/2, AJAX, WebSockets

 Application Layer: DNS

Outlook

