Abstraction

The Approach

Abstraction

- Represent complex program by simple program
 original program is concrete, simple one is abstract
- Construction: if abstraction correct, then original correct
 - But: abstract program may fail even if the original is correct
 - We will look at *refinement* later
- Whenever we can not make a decision with certainty, we allow all possibilities

Predicate Abstraction

- Replace variables by predicates. E.g., instead of x have the predicates
 - b, meaning $\{x>0\}$,
 - $c: \{x < 0\},\$
 - $d: \{x==0\}$
- or replace x and y by
 - e: {x==y}, or by
 - f: $\{x < y\}$, or by
 - $-g: \{2x y < 0\},\$

Predicate Abstraction

Example: keep only the lowest bit of a number.

- b: {x is odd}
- assert(x!=38) **becomes** assert(b)
- assert(b) is stricter:
 - if assert (x!=38) fails then assert (b) fails
 - But not vice-versa
- if(x==5) then S1 else S2 fibecomes
 if(b?*:F) then S1 else S2 fi

(meaning: if b is true, try both branches, otherwise try only the else branch)

Construct abstract programs one statement at a time

For automatic abstraction, let's first check some basics.

Let's say we have one predicate:

 $b = \{x \leq y\}$

How do we abstract

Computing Abstraction

b =
$$\{x \le y\}$$

Use Hoare's weakest precondition
 $\{y \le y\}$
x : = y
 $\{x \le y\}$

Thus, $y \leq y$ before the statement iff $x \leq y$ after

Computing Abstraction

Now for y := y + 1.

 $\{x \le y + 1\}$ y := y + 1 $\{x \le y\}$

Thus, $x \le y + 1$ before iff $x \le y$ after. In which cases can we guarantee $x \le y+1$?

b	b'
$\{x \leq y\}$	{x ≤ y+1}
Т	Т

We don't have enough information to decide whether x≤y+1 before, so we
approximate.
abstraction: b = b ? T : *;

Conservative Abstraction

Let us abstract x by b: {x < 0}. If in abstract system b = true, then in concrete program, x < 0.

Converse does not hold. Example:

```
x = -2;
x = x + 1;
assert(x<0);</pre>
```

is abstracted statement-by statement-to

```
b = true;
if !b then
  b = false;
else
  b = *;
assert(b);
```

The abstraction is *conservative*: bugs are preserved (but new bugs may occur).

Computing Abstraction

Two predicates: $b = \{x \le y\}$ and $c = \{x = y+1\}$

preconditions:

 $\{x \le y + 1\}$ y := y + 1

 $\{x \leq y\}$

```
\{x = y + 2\}
y := y + 1
\{x = y+1\}
```

```
y:=y+1 is abstracted to
simultaneous
    b := b&&!c || !b&&c ? T : F
    c := b&&!c || !b&&c ? F : *
end
```

In general, simultaneous assignments are needed for abstract statements

b	b		b'	C'
x≤y	x=y+1		x≤y+1	x=y+2
Т	Т	Х		
Т	F	a≤b	Т	F
F	Т	a=b+1	Т	F
F	F	a>b+1	F	*

Abstraction of Conditional

We use * to denote a nondeterministic value

b	
{ x odd}	$\{x = 5\}$
Т	*
F	F

Original Program if (x == 5) then S1 else S2

fi

Abstract Program (b = {x odd})
if (b?*:F) then

else S2

Note:

- b=false is the same as x even, which implies x!=5.
- b=true means that x is odd, which means x may or may not be 5

V&T

fi

Another Example

```
done = 0;
while(done == 0) {
    if(x != 0)
        x---;
    else
        done++;
}
assert(x == 0);
```

How do you argue that the program is correct?

Which predicates do you need to prove that?

Abstraction

- Tricky: find the proper abstraction!
 - You use the counterexamples, but how?
 - You can do it by hand
 - You can try to do it automatically
- Automatically finding the proper abstraction cannot always work. Why not?

Precisely: assignment

Original: x:= e Predicates p1,...,pn.

Suppose we have {qi} x := e; {pi}

Roderick Bloem

Let ai be the disjunction of assignments to p1...pn that imply gi.

let bibe the disjunction of assignments to p1...pn that imply -qi.

```
x := e is replaced by
simultaneous
  p1 = a1 ? T : b1 ? F : *
  ...
  pn = an ? T : bn ? F : *
end simultaneous
```

example

Assignment: b := b+1 **Predicates:** $p1 = \{a \le b\}$ and $p2 = \{a=b+1\}$

```
\{a \le b + 1\} \{a = b + 2\}
b := b + 1 b := b + 1
\{a \le b\} \{a = b + 1\}
```

```
Look at the table: row TT, TF, and FT have a T in
column a≤b and TT and FF have an F in that
column.
          Therefore:
2g v 1g
                    implies a \le b + 1
(p1 \land p2) \lor (\neg p1 \land \neg p2) implies a > b + 1
(note: false implies anything)
```

```
For the 2<sup>nd</sup> predicate:
p1 \land p2 implies a = b+2
p1 \vee \negp2 implies a \neq b+2
```

```
b:=b+1 is abstracted to
simultaneous
{a≤b} := p1||p2 ? T : p1==p2 ? F : *
{a=b+1} := p1&&p2 ? T : p1!=p2 ? F : *
end
```

	р1	p2				
	a≤b	a=b+1		a≤b+1	a=b+2	
	Т	Т	×	T/F	T/F	
(Cf. same example on an earlier slide)	Т	F	a≤b	Т	F	
V&T	F	Т	a=b+1	Т	F	
	F	F	a>b+1	F	*	