
IAIK

Professor Horst Cerjak, 19.12.2005

1

Roderick Bloem V&T Abstraction

Abstraction



IAIK

Professor Horst Cerjak, 19.12.2005

2

Roderick Bloem V&T Abstraction

The Approach

C Program
Abstract

Abstract 

Program
Boolean Model 

Checker

Counterexample
Analyze

counterexample

on original 

program

 True 

counterexam

ple?

NO

YES

BUG

Predicates

(initially empty) Correct?

NO

YES C Program

is correct



IAIK

Professor Horst Cerjak, 19.12.2005

3

Roderick Bloem V&T Abstraction

Abstraction

• Represent complex program by simple program

– original program is concrete, simple one is abstract

• Construction: if abstraction correct, then original 

correct

– But: abstract program may fail even if the original is 

correct

– We will look at refinement later

• Whenever we can not make a decision with 

certainty, we allow all possibilities



IAIK

Professor Horst Cerjak, 19.12.2005

4

Roderick Bloem V&T Abstraction

Predicate Abstraction

• Replace variables by predicates.  E.g., instead of x have 
the predicates
– b, meaning {x>0}, 

– c: {x<0}, 

– d: {x==0}

• or replace x and y by
– e: {x==y}, or by 

– f: {x<y}, or by 

– g: {2x – y < 0}, 



IAIK

Professor Horst Cerjak, 19.12.2005

5

Roderick Bloem V&T Abstraction

Predicate Abstraction

Example: keep only the lowest bit of a number.  

• b: {x is odd}

• assert(x!=38) becomes assert(b)

• assert(b) is stricter:

– if assert(x!=38) fails then assert(b) fails

– But not vice-versa

• if(x==5) then S1 else S2 fi becomes 

if(b?*:F) then S1 else S2 fi 

(meaning: if b is true, try both branches, otherwise try only the else branch)

Construct abstract programs one statement at a time



IAIK

Professor Horst Cerjak, 19.12.2005

6

Roderick Bloem V&T Abstraction

Abstraction Example

For automatic abstraction, let’s first check some basics.

Let’s say we have one predicate:

b = {x  y}

How do we abstract 

x := y?

y := y+1?



IAIK

Professor Horst Cerjak, 19.12.2005

7

Roderick Bloem V&T Abstraction

Computing Abstraction

b = {x  y}

Use Hoare’s weakest precondition

{y  y} 

x : = y

{x  y}

Thus, yy before the statement iff xy after

x := y is abstracted to

b = true



IAIK

Professor Horst Cerjak, 19.12.2005

8

Roderick Bloem V&T Abstraction

Computing Abstraction

Now for y := y + 1.

{x  y + 1} 

y := y + 1

{x  y}

Thus, x  y + 1 before iff x  y after.
In which cases can we guarantee x  y+1?

We don’t have enough information to decide whether xy+1 before, so we 
approximate.

abstraction: b = b ? T : *;

b b’

{x  y} {x  y+1} 

T T

F *



IAIK

Professor Horst Cerjak, 19.12.2005

9

Roderick Bloem V&T Abstraction

Conservative Abstraction 
Let us abstract x by b:{x < 0}.
If in abstract system b = true, then in concrete program, x < 0.  

Converse does not hold. Example:

x = -2;

x = x + 1;

assert(x<0);

is abstracted statement-by statement-to   

b = true;

if !b then 

b = false; 

else 

b = *;

assert(b);

The abstraction is conservative: bugs are preserved (but new bugs may occur).



IAIK

Professor Horst Cerjak, 19.12.2005

10

Roderick Bloem V&T Abstraction

Computing Abstraction

Two predicates: b={x  y} and c={x=y+1}

preconditions:

{x  y + 1}

y := y + 1

{x  y}

{x = y + 2}

y := y + 1

{x = y+1}

y:=y+1 is abstracted to

simultaneous

b := b&&!c || !b&&c ? T : F

c := b&&!c || !b&&c ? F : *

end

In general, simultaneous assignments are needed for abstract statements

b b b’ c’

xy x=y+1 xy+1 x=y+2

T T X

T F a  b T F

F T a=b+1 T F

F F a>b+1 F *



IAIK

Professor Horst Cerjak, 19.12.2005

11

Roderick Bloem V&T Abstraction

Abstraction of Conditional

Original Program

if(x == 5) then 

S1 

else 

S2 

fi

Abstract Program (b = {x odd})

if(b?*:F) then 

S1 

else

S2

fi

We use * to denote a 

nondeterministic value

Note: 

• b=false is the same as x even, which implies x!=5.

• b=true means that x is odd, which means x may or may not be 5

b

{x = 5} 

T *

F F



IAIK

Professor Horst Cerjak, 19.12.2005

12

Roderick Bloem V&T Abstraction

Another Example

done = 0;

while(done == 0){

if(x != 0)

x--;

else

done++;

}

assert(x == 0);

How do you argue that the 

program is correct?

Which predicates do you 

need to prove that?



IAIK

Professor Horst Cerjak, 19.12.2005

19

Roderick Bloem V&T Abstraction

Abstraction

• Tricky: find the proper abstraction!

– You use the counterexamples, but how?

– You can do it by hand

– You can try to do it automatically

• Automatically finding the proper abstraction 

cannot always work.  Why not?



IAIK

Professor Horst Cerjak, 19.12.2005

20

Roderick Bloem V&T Abstraction

Precisely: assignment
Original: x:= e

Predicates p1,…,pn.

Suppose we have
{qi}

x := e;

{pi}

Let ai be the disjunction of  assignments to 
p1…pn that imply qi.

let bi be the disjunction of  assignments to 
p1…pn that imply qi.

x := e is replaced by

simultaneous

p1 = a1 ? T : b1 ? F : *

…

pn = an ? T : bn ? F : *

end simultaneous

example

Assignment: b := b+1

Predicates: p1 = {a  b} and p2 = {a=b+1}

{a  b + 1}    {a = b + 2}

b := b + 1     b := b + 1

{a  b}        {a = b + 1}

Look at the table: row TT, TF, and FT have a T in 
column ab and TT and FF have an F in that 
column.  Therefore:

p1  p2           implies a  b + 1 

(p1p2)(p1p2) implies a > b + 1

(note: false implies anything)

For the 2nd predicate:

p1  p2 implies a = b+2

p1  p2 implies a  b+2

b:=b+1 is abstracted to

simultaneous

{ab}   := p1||p2 ? T : p1==p2 ? F : *

{a=b+1} := p1&&p2 ? T : p1!=p2 ? F : *

end

(Cf. same example on an earlier slide)

p1 p2

ab a=b+1 ab+1 a=b+2

T T  T/F T/F

T F ab T F

F T a=b+1 T F

F F a>b+1 F *


