/Teaching/System Level Programming/Assignments/A2
Pull from upstream before solving this task.
Task: Thread Synchronization
You will find a multi-threaded program in the upstream repository without any synchronization. Your task is to add correct and proper synchronization to make the program run flawlessly.
If you don’t know where and how to start, look at the help section below. While implementing, make sure to read the comments found in the assignment code, and if anything is unclear, come back to this Wiki.
Main Idea
This time, we provide a framework for SLP Assignment Interviews (AG) Simulation. The central roles in this scenario are:
- Students – aim to do the AG either online or in-person.
- Tutors – waiting for students to complete assignment interviews with them.
The student decides which AG possibility to use. The workflow then branches as follows:
Online AG:
- Every student waits in the waiting queue until a tutor selects the student for the assignment interview.
- Once the tutor is assigned, every student must wait for the tutor to create a test system instance before the AG can start.
- After the AG, the tutor enters the points, and no student should leave before receiving the points.
- Tutors responsible for online AGs periodically check, at their own pace, if there is a student waiting.
No dedicated mechanism is expected here! It is also expected that they take breaks if there is nothing to do!
In-person AG:
- Students should wait for the AG to start before they begin searching for an available tutor.
- Before the AG can start, the tutor creates the test system instance for the assigned student.
- After the AG, the tutor enters the points, and only after receiving the points the student can leave.
- In-person tutors are expected to work only on demand – implement a dedicated synchronization mechanism for that!
- Some students have skipped the previous assignment interview, so they must take the replacement one at the end.
Make sure to handle synchronization and performance while following the hints in the codebase.
Ensure that the provided comments and hints in the code are followed, and achieve the described workflow using only synchronization primitives.
Task
- Identify all actors and resources in the programs.
- You need to ensure that the resources are acquired safely.
- Think about potential data races and deadlock scenarios.
- Use synchronization primitives correctly to make access to all shared resources thread-safe.
- All shared resources must be accessed by only one thread at a time!
- As with all other assignments, you can still lose points during the interviews if you cannot explain your solution satisfactorily or any cheating is detected.
- The individual tasks are built to encourage the usage of at least one mutex, one semaphore, and one condition variable. Strongly think about which locking principles make the most sense in which situations.
- Notice the marked TODO fields and which files are not to be modified.
- Make sure to read the code as well as the function headers carefully.
Test your programs multiple times and with numerous parameters to find possible threading errors. Threading errors tend to crash programs/produce incorrect output very irregularly and are sometimes hard to reproduce.
Follow the “divide and conquer” principle and take a modular approach to the implementation. Start by implementing the online AG part first, then move on to in-person AGs without letting the tutors make a break and while excluding the replacement AG possibility, gradually adding more options as needed.
Make use of testing_defines.h
– this allows you to easily activate, deactivate, or randomize some parts of the code!
Building
This assignment uses CMake
as a build system. The essential build steps are as follows:
in-source building:
cd A2/ cmake . make
out-of-source building:
cd A2/ mkdir build && cd build cmake .. make
Notice that an executable titled restaurant has been created in the folder you called make
in. You can now start the program by executing the command ./slp_ag num_students num_tutors
, e.g. ./slp_ag 1 1
.
Common problems
- This task is about locking. Do not wrap your head around different edge cases. Only make sure every shared resource is correctly locked.
- Avoid potential deadlocks! Locks have to be locked in the same order.
- Do not unlock a mutex multiple times, do not destroy a locked mutex, and especially do not unlock a mutex from a thread not owning it. Consider scenarios that lead to undefined behavior! (check out the man page)
- You don’t have to change the cancellation state and/or type of any thread!
- Use assert statements to check the return values of the pthread_* and sem_* functions to catch erroneous usage!
General notes
- You are responsible only for locking. Do not change the program logic (except an if/while loop directly related to a synchronization primitive)!
==> Do not observe the codebase as an optimization or improvement opportunity. Instead, consider it a runway where you must make everything work correctly using only the learned synchronization primitives.
No new non-synchronization variables, code modifications, or reorganizations are allowed. - Timeout is a good sign for deadlock, lost signals, or overlocking. Make sure you don’t introduce any of these problems in your program.
- You have a free choice of synchronization primitives. We don’t restrict you anywise, but only encourage you to use all those mentioned in the lecture as the goal of this task is to get familiar with them.
- Ideally do not push any custom debug messages!
- Make sure printf messages indicating an unlogical program flow do not get printed! (e.g. “[OOPS] Tutor xyz has apparently gone crazy!…“).
- Ensure that the message “[ OK ] !! T H A T ‘ S A L L F O L K S !!’ is the very last that appears in stdout!
Help
The spirit of this course is that you should learn to look up technical concepts and implement practical tasks by yourself. However, here is some help in case you get lost:
Most important resource: Manual pages
for the pthreads
(POSIX
threads) functions
man pthreads man pthread_mutex_lock man pthread_cond_wait man < ... >
If you need a rough overview of the pthread library and how to lock correctly, make sure to check out the pthread tutorial (PDF) by Peter C. Chapin. It contains a lot of information you might need for the first and second assignments.
Note: If you get an error while trying to open the manual pages for pthread_mutex_lock, you can install the glibc-doc (sudo apt-get install glibc-doc
) package to fix the issue.
Some important concepts
Always look up the function you use in their man pages. They will tell you how each function behaves in much more detail.
- Semaphore Holds an integer value that can be increased and decreased by threads.
- A fixed amount of threads can enter.
- It puts the calling thread to sleep when it wants to decrease the value and has reached 0 or less.
- Sleeping threads are woken up when another thread increases the value.
- Datatype: sem_t
- Popular functions: sem_init, sem_destroy, sem_wait, sem_post
- See also https://linux.die.net/man/7/sem_overview
- Mutex Primitive that can be used to make sure only one thread accesses critical sections of code simultaneously.
- Only one thread can enter.
- It can be locked and unlocked.
- If a thread tries to lock an already locked mutex, it is put to sleep until the mutex is unlocked by the thread that currently has it locked.
- A mutex applies the same concept as a semaphore with the values 0 or 1.
- Datatype: pthread_mutex_t
- Popular functions: pthread_mutex_init, pthread_mutex_destroy, pthread_mutex_lock, pthread_mutex_unlock
- See also https://hpc-tutorials.llnl.gov/posix/
- Condition Variable Primitive that can be used to put threads to sleep and wake them up from other threads.
- A CV is ideal for many cases where one thread needs to wait for the result of some processing in another thread.
- They are always protected by an accompanying mutex.
- Datatype: pthread_cond_t
- Popular functions: pthread_cond_init, pthread_cond_destroy, pthread_cond_wait, pthread_cond_signal, pthread_cond_broadcast
- See also https://hpc-tutorials.llnl.gov/posix/
Assignment Tutor
If you have any questions regarding this assignment, go to Discord and read through the SLP channels. The probability that your question was already answered or some discussions will lead you in the right direction is quite high. If not so, just ask in the corresponding channel.
If you have a more direct question regarding your specific solution, you can also ask the tutor who organizes this assignment:
Nedžma Mušović, nedzma.musovic@student.tugraz.at